Supporting Information

A Comparative Study of Mechanisms of the Adsorption of CO₂ Confined within Graphene-MoS₂ Nanosheets: A DFT Trend Study

Francis M. Enujekwu^{a,b}, Collins I. Ezeh^a, Michael W. George^{a,c}, Mengxia Xu^{a,b},

Hainam Do^a, Yue Zhang^d, Haitao Zhao^b, Tao Wu^{a,b,*}

^a Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100. China

^b New Material Institute, University of Nottingham Ningbo China, Ningbo 315042, China

^c School of Chemistry, University of Nottingham, Nottingham NG7 2RD, the UK

^d Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

Table of Contents

CO ₂ Adsorption Energies on Different Interlayer Spacing	2
Adsorption energies of possible initial configurations of CO ₂ adsorption on perfect multilayer and monolayer structures using PBE [31]	3
Test for Cutoff Energy and KPOINT Grid Required for Convergence	5
Density of State (DOS) Analysis	7
Crystallographic Information Files (*.cif·) of Graphene/MoS ₂ Hybrids	.13
Reference	.13

CO₂ Adsorption Energies on Different Interlayer Spacing

Fig. S1: Individual plots of CO_2 binding energy as a function of interlayer distance. (a) Graphene/MoS₂ hybrid, (b) MoS₂/Graphene hybrid, (c) MoS₂ bilayer, and (d) Graphene bilayer.

Adsorption energies of possible initial configurations of CO₂ adsorption on perfect multilayer and monolayer structures using PBE [31]

Fig. S2 Relaxed geometric structures of CO₂ adsorption on possible initial graphene/MoS₂ (GMoS₂) and MoS₂/graphene (MoS₂G) hybrid configurations. Position and orientation of CO₂ with respect to the surface are: (a) Centre/parallel, (b) Edge/parallel, (c) Centre/perpendicular, (d) Edge/perpendicular, (e) Centre/parallel (rotated 30°), (f) Edge/parallel (rotated 30°), (g) Centre/parallel (rotated 45°), and (h) Edge/parallel (rotated 45°). Energies are given in meV. Negative means heat release and blue, yellow, red and grey spheres depict Mo, S, O and C atoms, respectively.

Fig. S3 Relaxed geometric structures of CO_2 adsorption on possible initial bilayers of MoS_2 (MoS_2B) and graphene (GrapheneB) configurations. Position and orientation of CO_2 with respect to the surface are: (a) Centre/parallel, (b) Edge/parallel, (c) Centre/perpendicular, (d) Edge/perpendicular, (e) Centre/parallel (rotated 30°), (f) Edge/parallel (rotated 30°), (g) Centre/parallel (rotated 45°), and (h) Edge/parallel (rotated 45°). Energies are given in meV. Negative means heat release and blue, yellow, red and grey spheres depict Mo, S, O and C atoms, respectively.

Fig. S4 Relaxed geometric structures of CO_2 adsorption on possible initial monolayers of graphene (G5x5) and MoS₂ (M4x4) configurations. Position and orientation of CO₂ with respect to the surface are: (a) Centre/parallel, (b) Edge/parallel, (c) Centre/perpendicular, (d) Edge/perpendicular, (e) Centre/parallel (rotated 30°), (f) Edge/parallel (rotated 30°), (g) Centre/parallel (rotated 45°), and (h) Edge/parallel (rotated 45°). Energies are given in meV. Negative means heat release and blue, yellow, red and grey spheres depict Mo, S, O and C atoms, respectively.

Test for Cutoff Energy and KPOINT Grid Required for Convergence Table S1: Adsorption energies of CO_2 on bilayer, hybrid and monolayer structures of most stable structures at EDDIF=10⁻⁴ and EDDIG=-0.03, NSW=300, ENCUT=500, 5×5×1 KPOINT

Structure	Adsorption Energies
	E_{AE} (meV)
Edge/Parallel (rotated 30°) (6GMoS ₂)	-26.58
Edge/Parallel (rotated 45°) 7MoS ₂ G	-27.01
Edge/Parallel (3MoS ₂)	-40.37
Centre/Parallel (rotated 45°) (8Graphene)	-32.00
Centre/Parallel (rotated 30°) (5G5x5)	-15.34
Edge/Parallel (3M4x4)	-19.97

Table S2: Adsorption energies of CO₂ on bilayer, hybrid and monolayer structures of most stable structures at EDDIF=10⁻⁶ and EDDIG=-0.01, NSW=500, ENCUT=500, $5 \times 5 \times 1$ KPOINT

Structure	Adsorption Energies
	E_{AE} (meV)
Edge/Parallel (rotated 30°) (6GMoS ₂)	-26.44
Edge/Parallel (rotated 45°) 7MoS ₂ G	-26.84
Edge/Parallel (3MoS ₂)	-39.85
Centre/Parallel (rotated 45°) (8Graphene)	-32.01
Centre/Parallel (rotated 30°) (5G5x5)	-15.35
Edge/Parallel (3M4x4)	-19.65

Table S3: Adsorption energies of CO_2 on bilayer, hybrid and monolayer structures of most stable structures at EDDIF=10^-6 and EDDIG=-0.03, NSW=500, ENCUT=600, 6x6x1

Structure	Adsorption Energies
	E_{AE} (meV)
Edge/Parallel (rotated 30°) (6GMoS ₂)	-27.16
Edge/Parallel (rotated 45°) 7MoS ₂ G	-27.07
Edge/Parallel (3MoS ₂)	-39.59
Centre/Parallel (rotated 45°) (8Graphene)	-32.28
Centre/Parallel (rotated 30°) (5G5x5)	-15.53
Edge/Parallel (3M4x4)	-19.37

Table S4: Adsorption energies of CO_2 on bilayer, hybrid and monolayer structures of most stable structures at EDDIF=10^-6 and EDDIG=-0.03, NSW=500, ENCUT=700, 7x7x1

Structure	Adsorption Energies
	E_{AE} (meV)
Edge/Parallel (rotated 30°) (6GMoS ₂)	-27.14
Edge/Parallel (rotated 45°) 7MoS ₂ G	-27.61
Edge/Parallel (3MoS ₂)	-39.63
Centre/Parallel (rotated 45°) (8Graphene)	-32.37
Centre/Parallel (rotated 30°) (5G5x5)	-16.38
Edge/Parallel (3M4x4)	-20.33

Density of State (DOS) Analysis

Fig. S5: Total density of state (TDOS) of pure graphene bilayer.

Fig. S6: Total density of state (TDOS) of pure 5x5 supercell graphene monolayer.

Fig. S7: Total density of state (TDOS) of pure MoS₂ bilayer.

Fig. S8: Total density of state (TDOS) of pure 4x4 supercell MoS₂ monolayer.

Fig. S9: Total density of state of pure Graphene/MoS₂ bilayer heterostructure.

Fig. S10: Total density of state of pure $MoS_2/Graphene$ bilayer heterostructure.

Fig. S11: Total density of state of graphene bilayer with adsorbed CO₂ molecule.

Fig. S12: Total density of state (TDOS) of 5x5 supercell graphene monolayer with adsorbed CO₂ molecule.

Fig. S13: Total density of state of MoS₂ bilayer with adsorbed CO₂ molecule.

Fig. S14: Total density of state of MoS₂ bilayer with adsorbed CO₂ molecule.

Fig. S15: Total density of state of MoS₂/Graphene bilayer heterostructure with adsorbed CO₂ molecule.

Fig. S16: Total density of state of MoS₂/Graphene bilayer heterostructure with adsorbed CO₂ molecule.

Figure S17: Projected DOS spectra before (a) and after (b) CO_2 adsorption. (G5×5) 5×5 supercell graphene monolayer, (M4×5) 4×4 supercell MoS₂ monolayer, (GrapheneB) graphene bilayer, (MoS₂B) MoS₂ bilayer, (GMoS₂) graphene/MoS₂ hybrid, and (MoS₂G) MoS₂/graphene hybrid. The dashed line represents the Fermi level.

Crystallographic Information Files (*.cif·) of Graphene/MoS₂ Hybrids

Reference

1. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. *Physical Review Letters* **1996**, *77* (18), 3865-3868.

2. Liu, Y.; Wilcox, J., CO2 Adsorption on Carbon Models of Organic Constituents of Gas Shale and Coal. *Environ Sci Technol* **2011**, *Vol.* 45 (No. 2), 809-814.

3. Li, J.; Hou, M.; Chen, Y.; Cen, W.; Chu, Y.; Yin, S., Enhanced CO 2 capture on graphene via N, S dual-doping. *Applied Surface Science* **2017**, *399*, 420-425.

4. Shijun Zhao; Jianming Xue; Kang, W., Gas adsorption on MoS2 monolayer from first-principles calculations. *Chemical Physics Letters* **2014**, *Vol. 595-596*, pp 35-42.