

Nanoscale Advances

COMMUNICATION - ESI

Electronic Supplementary Information (ESI)

PU Nanocomposites from Bifunctional Nanoparticles: Impact of Liquid Interphase on Mechanical Properties

Cibele Carneiro Pessan, Bruno Henrique Ramos de Lima and Edson Roberto Leite*

Chemistry Department, Federal University of São Carlos

Rod. Washington Luís km 235, 13565-905, São Carlos SP, Brazil

Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM) Rua Giuseppe Máximo Scolfaro, 10000, 13083-970, Campinas SP, Brazil.

Email: edson.leite@Innano.cnpem.br

Nanoscale Advances

Fig. S1 Thermogravimetric analysis of the hybrid nanoparticle Mag@PB₁₀₀₀. Analysis performed at heating rate of 10 °C min⁻¹ and under N₂ atmosphere.

Fig. S2 Differential scanning calorimetry heat flow curve of commercial Terathane₁₀₀₀[®]. Analysis performed at heating rate of 10 °C min⁻¹ and N₂ atmosphere.

Nanoscale Advances

Fig. S3 Differential scanning calorimetry heat flow curve of Mag@PB₁₀₀₀ nanoparticles. Analysis performed at heating rate of 20 °C min⁻¹ and N₂ atmosphere.

Fig. S4 Nanocomposites and non-filled formulations samples. The addition of nanoparticles changed the material's color and texture, that shifts from translucid and glossy to opaque and matte with very high nanoparticle loadings.

COMMUNICATION

Nanoscale Advances

Fig. S5 Differential scanning calorimetry analysis of (a) low concentration nanocomposites and non-filled compositions (analysis performed at heating rate of 10 °C min⁻¹ and N₂ atmosphere) and (b) highly concentrated compositions and Mag@PB₁₀₀₀ nanoparticles (analysis performed at heating rate of 20 °C min⁻¹ and N₂ atmosphere); (c) Tensile stress-strain curves and (d) break points of Mag@PB₁₀₀₀/PU nanocomposites and non-filled compositions (the highlighted regions represent the samples groups: non-filled compositions, low concentration nanocomposites and highly concentrated nanocomposites).

COMMUNICATION

Fig. S6 Higher-strain modulus at different points of strain, calculated from the stress-strain curve for all formulations. The highlighted regions represent the samples groups: non-filled compositions, low concentration nanocomposites and highly concentrated nanocomposites.

Observation on calculation method of elastic and higher-strain moduli:

The elastic modulus calculation was performed in accordance with the EN10002 and ASTM E8 standards using the BlueHill3 software. The automatic calculation determines the material's elastic modulus using a standard linear regression technique, with an offset of 0.2%.

The higher-strain moduli were calculated from the slope of a fitting curve of the stress-strain curves at each strain value of interest. The limit points for the fitting curves were \pm 1% strain for modulus at 5% strain and \pm 10% strain for moduli at strain values above and including 25% strain.

COMMUNICATION

Nanoscale Advances

NCs Formulations	Blends Formulations	Mag@PB ₁₀₀₀ in Composite [wt%]	60%wt of NP	40%wt of NP
			Fe ₃ O ₄ in Composite [%wt]	PB_{1000} in Composite and in Blend [%wt]
PU-0.05%	Blend-0.05%	0.05	0.03	0.02
PU-0.10%	Blend-0.10%	0.10	0.06	0.04
PU-0.50%	Blend-0.50%	0.50	0.30	0.20
PU-1.0%	Blend-1.0%	1.0	0.60	0.40
PU-2.5%	Blend-2.5%	2.5	1.5	1.00
PU-5.0%		5.0	3.0	2.0
PU-60%		60	36	24
PU-70%		70	42	28
PU-90%		90	54	36

Table S2. Glass transition values of the nanocomposites and non-filled compositions.

Formulations	Tg [°C]			
Polyurethane Reference Formulation				
PU	8.9			
Low Concentration Nanocomposite Formulations				
PU-0.05%	7.8			
PU-0.10%	5.7			
PU-0.50%	8.7			
PU-1.00%	10.7			
PU-2.50%	7.4			
PU-5.00%	7.3			
Blend Formulations				
Blend-0.05%	11.2			
Blend-0.10%	6.6			
Blend-0.50%	8.5			
Blend-1.0%	8.5			
Blend-2.5%	7.8			