
Electronic Supplementary Information to
“Hyperfine interaction in atomically thin transition metal dichalcogenides”

I. D. Avdeev1 and D. S. Smirnov1, ∗

1Ioffe Institute, 194021 St. Petersburg, Russia

CONTENTS

S1. Summary of TMD ML structure 1

S2. Shift of point symmetry group transformations
center 1

S3. Pseudospin operators 2

S4. Tight binding model 3

References 3

S1. SUMMARY OF TMD ML STRUCTURE

A single TMD ML has the honeycomb lattice with the
two dimensional translation vectors a1 = a0(1, 0) and
a2 = a0(1/2,

√
3/2), where a0 is the lattice constant.

The choice of the coordinate frame is described in the
main text and is shown in Fig. 1. The metal atoms lie
within the ML plane (xy), while the chalcogen atoms
are shifted from the plane along and opposite to z axis.
The position of the metal atom in the elementary cell
is τ = a0/2(1, 1/

√
3), and the two chalcogen atoms are

located above and below the point −τ .

The reciprocal lattice is determined by the basis vec-
tors b1 = 2π/a0(1,−1/

√
3) and b2 = 2π/a0(0, 2/

√
3).

The extremes of the conduction and the valence bands
are located at the two inequivalent corners of the hexag-
onal Brillouin zone, i.e. in K± = 2π/a0(±2/3, 0) valleys.

S2. SHIFT OF POINT SYMMETRY GROUP
TRANSFORMATIONS CENTER

For the symmetry analysis, described in the main text,
it is necessary to find the irreducible representations of
the electronic states for the choices of the point symmetry
origins at the points ±τ . Here we present a formalism,
which solves this problem. It can also be easily gener-
alized for the other problems in physics of multivalley
semiconductors.

Let us consider a spatial group Gk of the wave vector
k = K±. Further, let us assume, that this group is sym-
morphic, as in the case of TMD MLs. Let T be the trans-
lation subgroup. Then the quotient group Pk = Gk/T ,
being the set of rotations {R}, is the corresponding point

group. By definition, for each R [S1]

Rk = k + b , (S1)

where b is a reciprocal lattice vector (or zero vector).
Now consider a set of the Bloch wave functions {ψn} =
{eikrun(r)}, with un(r) being the Bloch amplitude, that
forms the basis of an irreducible representation D of the
point group Pk. Note, that in case of TMD ML, all
the irreducible representations are one dimensional, but
here we consider a general situation. The wave functions
transform under the action of R as

Rψn =
∑
n′

ψn′ Dn′n(R) . (S2)

where D̂(R) are the matrices of the irreducible represen-
tation D.

We introduce the point group P ′k with the transforma-
tions center shifted by a vector t as

P ′k = t̂Pk t̂
−1, (S3)

where t̂ denotes the translation operator. The nontrivial
case corresponds to t being not a translation vector. The
elements g′ of P ′k have the form

g′ = (R|t−R t), (S4)

being the rotation R with the subsequent shift by the
vector t−R t.

For TMD ML for t = ±τ , the vector t−R t is a transla-
tion vector for each R, because there are only one metal
atom and one pair of chalcogen atoms in the primitive
cell. Once this condition is satisfied, one can show that
the set {e−ik(t−Rt)} forms a one dimensional representa-
tion Dt of the group Pk.

To prove this statement let us consider the two ro-
tations R1, R2 ∈ Pk and the corresponding translation
vectors

α1,2 = t−R1,2t . (S5)

The scalar product is invariant under rotations kR1α2 =(
R−11 k

)
α2, so

eik(α2−R1α2) = 1

by the definition of Pk, see Eq. (S1). From this relation,
using Eq. (S5), we readily obtain

e−ik(t−R1t)e−ik(t−R2t) = e−ik(t−R1R2t),
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TABLE I. From left to right: the bands; C3h irreducible
representations of the electronic states in K∓ valley with the
transformations center at the midpoint of the hexagon and
at a metal atom (M); the irreducible representations in D3h

group and the basis functions (see Table III); the form of the
hyperfine interaction Hamiltonian.

band
C3h C3h, M D3h, M

Hhf
K− K+ K− K+ irrep K− K+

cb+ 1 Γ10 Γ9 Γ7 Γ8 Γ7 ψ7
2 ψ7

1 H−

cb Γ12 Γ11 Γ8 Γ7 Γ7 ψ7
1 ψ7

2 H+

vb Γ8 Γ7 Γ9 Γ10 Γ8 ψ8
2 ψ8

1 H−

vb− 1 Γ7 Γ8 Γ11 Γ12 Γ9 ψ9
1 ψ9

2 Hz

TABLE II. From left to right: the bands; C3h irreducible
representations of the electronic states in K∓ valley with
the transformations center at the midpoint of the hexagon
and between neighboring chalcogen atoms (X); the irreducible
representations in D3h group and the basis functions (see ta-
ble III); the form of the hyperfine interaction Hamiltonian.

band
C3h C3h, X D3h, X

Hhf
K− K+ K− K+ irrep K− K+

cb+ 1 Γ10 Γ9 Γ11 Γ12 Γ9 ψ9
1 ψ9

2 Hz

cb Γ12 Γ11 Γ9 Γ10 Γ8 ψ8
2 ψ8

1 H−

vb Γ8 Γ7 Γ12 Γ11 Γ9 ψ9
2 ψ9

1 Hz

vb− 1 Γ7 Γ8 Γ10 Γ9 Γ8 ψ8
1 ψ8

2 H+

which proves the multiplication rule, and thus the state-
ment.

Therefore, the set of the functions {ψn}, which trans-
forms according to Eq. (S2), is the basis of a representa-
tion

D′ = D ⊗Dt , (S6)

of the point group P ′k, where Dt(R) = e−ik(t−Rt).
In the K− (K+) valley of a TMD ML, Dτ is the Γ2(3)

representation and D−τ is the representation Γ3(2) of the
C3h point group. The multiplication of the representa-
tions allows us to find the irreducible representations of
the wave functions with different centers of transforma-
tions. The representations of D3h group are summarized
in the tables in the main text, while the representation
of C3h group are given in Tables I and II. The correspon-
dence between them is established using the compatibil-
ity Table III.

S3. PSEUDOSPIN OPERATORS

Here we explicitly construct the pseudospin operators
in the dyadic form, which act in the valley pseudospin
2× 2 space. The bases of the representations are chosen
in agreement with Ref. S2.

We denote the standard bases of Γ7 (Γ8) representation
as u = (|1〉 , |2〉) = (|−J〉 , |+J〉) and v = (−〈2| , 〈1|).

TABLE III. Compatibility chart of irreducible representations
and basis functions for D3h and C3h point symmetry groups.

D3h C3h

Γ7
ψ7

1

ψ7
2

|−1/2〉
|+1/2〉

Γ8

Γ7

ψ7
1

ψ7
2

Γ8
ψ8

1

ψ8
2

|−1/2〉 zSz

|+1/2〉 zSz

Γ10

Γ9

ψ8
1

ψ8
2

Γ9
ψ9

1

ψ9
2

|−3/2〉
|+3/2〉

Γ11

Γ12

ψ9
1

ψ9
2

These two bases can be obtain one from another perform-
ing the time reversal with the Hermitian conjugation.
Thus they transform in the same way for all symmetry
operations g:

gu = u D̂(g), (S7a)

g v = v D̂(g). (S7b)

Using the coupling coefficients one can easily find opera-
tors belonging to Γ2 representation

τ̂ (2) =
i√
2

(|1〉 〈1| − |2〉 〈2|) ∝ τ̂z , (S8)

and Γ5 representation

τ̂
(5)
1 = − |1〉 〈2| ∝ (τ̂x − iτ̂y) ,

τ̂
(5)
2 = |2〉 〈1| ∝ −(τ̂x + iτ̂y) .

(S9)

They are proportional to the components of the valley
pseudospin operator τ̂ , because they transform in the
same way. The intervalley hyperfine interaction Hamil-
tonian can be written in a matrix form as

H± = A⊥(Ixτx ± Iyτy) +A‖Izτz , (S10)

whereA⊥ andA‖ are the constants and the different signs
correspond to the different order of the basis functions
(|1〉 , |2〉) or (|2〉 , |1〉). The signs are explicitly written in
the last columns of Tables I and II.

For Γ9 states the pseudovector operator τ̂z, belonging
to Γ2, is given by Eq. (S8), while the Γ3 operator has the
form

τ̂ (3) = −1

2
(|1〉 〈2| − |2〉 〈1|) ∝ τ̂y . (S11)

The symmetry allowed hyperfine interaction Hamiltonian
is

Ĥz = A‖τzIz +Ayzτy∆Iz . (S12)

The bands and atoms relevant for this case are also given
in Tables I and II in the last columns.
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S4. TIGHT BINDING MODEL

We complement the symmetry analysis described in
the main text with calculations performed in the 22 band
tight binding model from Ref. S3. The model uses five
atomic orbitals at metal atom Dmz

(mz = −2 . . . 2), and
six atomic orbitals at chalcogens Pup

mz
= Pmz

(r−h) and

P down
mz

= Pmz
(r+h) (mz = −1, 0, 1), where h = (0, 0, h)

is the chalcogens displacement from the TMD plane. The
model also includes on-site spin orbit interaction, which
is included following Ref. S4.

The calculation yields the following Bloch amplitudes
in K± valleys:

ucb+1
± = ±0.9138iD0 |↓ / ↑〉 ± 0.4039P∓1 |↓ / ↑〉 ∓ 0.0269iD∓1 |↑ / ↓〉 ∓ 0.0322i∆P±1 |↑ / ↓〉 , (S13a)

ucb± = ±0.9155D0 |↑ / ↓〉 ∓ 0.4012iP∓1 |↑ / ↓〉 ∓ 0.014D±1 |↓ / ↑〉 ∓ 0.028iP0 |↓ / ↑〉 , (S13b)

uvb± = 0.899iD±2 |↑ / ↓〉+ 0.438P±1 |↑ / ↓〉 , (S13c)

uvb−1± = 0.8934D±2 |↓ / ↑〉 − 0.4484iP±1 |↓ / ↑〉+ 0.0045D±1 |↑ / ↓〉 − 0.0299iP0 |↑ / ↓〉 . (S13d)

Here we introduced Pmz
= (Pup

mz
+ P down

mz
)/
√

2 and

∆Pmz
= (Pup

mz
−P down

mz
)/
√

2. Phases of the wavefunctions
above are chosen to satisfy the two rules: (i) The func-
tions um± form the standard basis of the corresponding
irreducible representation of D3h group with the center
of transformations at the center of hexagon [S2]. (ii) The
function um+ is obtained from um− by the time reversal
symmetry, which assumes the following transformation
of spinors:

|↑〉 → |↓〉 , |↓〉 → − |↑〉 . (S14)

The wavefunctions ucb+1
± correspond to the anisotropy

parameter α ≈ 0.08, which describes the noncollinear
term Ayzτy∆Iz in the main text. As a result, in this
model the noncollinear interaction is only 6 times weaker,
than the collinear one. At the same time this model
does not predict any corrections to the purely Ising type
hyperfine interaction in the upper valence band (vb).

Finally, we note, that in W (tungsten) based TMDs

the order of cb and cb+ 1 bands is inverted. In this case
the ground exciton state is dark in xy polarizations In z
polarization it is optically active [S5]. The corresponding
dipole matrix element, is proportional to the overlap of
Pup
±1 and P down

±1 orbitals and the anisotropy parameter α.
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