Supporting Information

Control covered compositions and morphologies of uranium oxide

nanocrystals in solution phase: multi-monomer growth and self-

catalysis

Qiang Yan^{ab}, Yiwu Mao^a, Xiaosong Zhou^a, Jianhua Liang^a, Shuming Peng^{a*}, Minyou Ye^{b*}

^aInstitute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China ^bSchool of Physical Sciences, University of Science and Technology of China, Hefei, 230026, China

*corresponding authors: Email addresses: pengshuming@caep.cn(S.M. Peng), yemy@ustc.edu.cn (M.Y. Ye)

Section 1: Compositions and morphologies control

Figure S1. XRD patterns (a) of products obtained at different pH values (UO₂: pH=9.81 red;

U₄O₉: pH=10.66, blue. Symbols: $\bullet = U_4O_9$; $\bullet = UO_2$) and XPS spectroscopy (b and c) of

stoichiometric uranium oxide.

Table S1. The products at different pH values ($T = 200^{\circ}C$, t = 6 hours).

Figure S2. SEM images of products from the experiments described in Table S1. Products: a,

UO3·H2O; b, UO3·H2O (major) and U3O8; c, U3O8; d, U3O8 (rod) and UO2 (particle); e, UO2; f,

U4O9.

Table S2.1. The experimental parameters for U₃O₈ morphological control.

Table S2.2. The experimental parameters for UO₂ morphological control.

Figure S3. XRD patterns of various morphologies U₃O₈ (a) and UO₂ (b).

Section 2: multi-monomer growth mechanisms and verified experiments

Table S3.1. The experimental parameters to control compositions (UAH = 200 mg, DI water = 5

mL, acetone = 10mL, T = 200 °C, t = 6 h).

 Table S3.2. The experimental parameters to control compositions (UAH = 500mg, DI water

 =10mL, acetone=10mL, T=200, t=20h).

Table S4. The products at varying reaction times (UAH = 100 mg, DI water = 5 mL, acetone =

10mL, ammonia = 300 µ L, T = 200 °C).

Figure S4. SEM images of products at varying reaction time based on experiments which listed in Table S4.

Table S5. The experiments without the addition of ammonia.

Figure S5. SEM images of products without the addition of ammonia (based on experiments listed in Table S5).

Figure S6. A schematic illustration of the classic LaMer theory.

Section 3: Self-catalytic mechanisms and verified experiments

Figure S7. Main reaction pathways for acetone aldolization.

Table S6.1. GC-MS results for the organic products during the acetone reaction at 200 °C (t=20h).

Table S6.2. GC-MS results for the organic products during the acetone reaction at 200 °C (t=20h).

 Table S7. GC-MS results for the organic products at varying reaction time. Experimental conditions are listed in Table S4.

Table S8.1. GC-MS results of experiments in Table S8.2.

Table S8.2. Experiments to verify the self-catalytic mechanism.

Section 1. Compositions and morphologies control

Figure S1. XRD patterns (a) of products obtained at different pH values (UO₂: pH=9.81 red curve; U₄O₉: pH=10.66, blue curve. Symbols: $\bullet = U_4O_9$; $\bullet = UO_2$) and XPS spectroscopy (b and c) of stoichiometric uranium oxide.

The U₄O₉ (a/4 = 5.43 Å) lattice parameter is slightly smaller than UO₂ (a = 5.46 Å), which results in a larger 2 theta for each correspond peak. The average valence state of U(V+VI)₄O₉ (b and c, blue curve) is higher than the valance state of U (VI) O₂ (b and c, red curve), which results in a higher binding energy of U_{4f}. Peak positions of binding energy shift to higher from UO₂, U₄O₉, U₃O₈ to UO₃·H₂O.

Sample	DI water	Acetone	UAH	$NH_3 \cdot H_2O$	ъU	Products	
ID	mL	mL	mg	μL	pm	rioducis	
S1-a	15	-	100	50	-	UO ₃ ·H ₂ O	
S1-b	5	10	100	25	4.76	$UO_3 \cdot H_2O \& U_3O_8$	
S1-c	5	10	100	75	7.83	U_3O_8	
S1-d	5	10	100	100	8.25	U_3O_8 & UO_2	
S1-e	5	10	100	300	9.81	UO_2	
S1-f	5	10	100	1500	10.66	U_4O_9	

Table S1. The products at different pH values ($T = 200^{\circ}C$, t = 6 hours).

The oxidation state of uranium in the final products decreased from the U(VI) $O_3 \cdot H_2O$ and $U(VI+V)_3O_8$ to U(IV)O₂ with an increasing pH value (from 4.67 to 9.81). This implies that the reducing ability of system increases with increasing pH values. The appearance of the $U(V+IV)_4O_9$ at higher pH values (10.66) is due to a high particle concentration in solution, shortened the monomer diffusion distance and induced rapid U(V) growth packaging into nanoparticles.

Figure S2. SEM images of products from the experiments described in Table S1. Products: a, $UO_3 \cdot H_2O$; b, $UO_3 \cdot H_2O$ (major) and U_3O_8 ; c, U_3O_8 ; d, U_3O_8 (rod) and UO_2 (particle); e, UO_2 ; f, U_4O_9 . XRD patterns for the products are showed in Fig. 1.

The product particle size clearly decreased with the increasing pH values. This reveals that

the amount of particles also decreased with the increasing pH values. This is possibly related

to the increasing rate of the redox reaction and the degree of supersaturation.

Sample	DI water	Acetone	UAH	NH ₃ ·H ₂ O	Time	Marnhalagiag
ID	mL	mL	mg	μL	h	Morphologies
S2a	7.5	7.5	100	10	24	Nail like
S2b	10	10	500	200	20	Bone like
S2c	10	5	100	200	24	Prism
S2d	7.5	10	200	50	20	Spear like
S2e	10	5	200	100	20	Bone like

Table S2.1. The experimental parameters for U₃O₈ morphological control.

Table S2.2. The experimental parameters for UO₂ morphological control.

Sample	DI water	Acetone	UAH	$NH_3 \cdot H_2O$	Time	Shanas
ID	mL	mL	mg	μL	h	Snapes
S2f	5	10	25	300	24	Sunk octahedron
S2g	5	10	100	300	6	Octahedron
S2h	5	10	100	400	6	Sphere & octahedron
S2i	10	10	500	800	20	Near sphere

Table S2.1 and S2.2 list the experimental conditions to control the morphology (see Fig. 2) of U_3O_8 (Table S2.1) and UO_2 (Table S2.2), respectively. The results indicate that the higher addition of ammonia (higher pH values) always yield UO_2 .

Figure S3. XRD patterns of various morphologies U_3O_8 (a) and UO_2 (b).

XRD patterns indicated U₃O₈ (a) and UO₂ (b) with various morphologies (Fig. 2) obtained at

different conditions (Table S2.1 and Table S2.2) are pure phases.

Section 2: multi-monomer growth mechanisms and verified experiments

Table S3.1. The experimental parameters to control compositions (UAH = 200 mg, DI water = 5 mL, acetone = 10 mL, T = 200 °C, t = 6 h).

Sample	UAH	DI water	Acetone	NH ₃ ·H ₂ O	nII	Draduata
ID	mg	mL	mL	μL	рн	Products
S3-1a	200	5	10	25	5.51	U ₂ (NH ₃) O ₆ 3H ₂ O
S3-1b	200	5	10	50	7.03	$U_2(NH_3) O_6 3H_2 O + U_3 O_8$
S3-1c	200	5	10	75	7.56	$U_2(NH_3) O_6 3H_2 O + U3O_8$
S3-1d	200	5	10	100	8.13	$U_3O_8 + UO_2$
S3-1e	200	5	10	200	9.5	UO_2
S3-1f	200	5	10	300	9.66	UO_2
S3-1g	200	5	10	500	9.98	UO_2
S3-1h	200	5	10	700	10.18	U_4O_9
S3-1i	200	5	10	800	10.28	U_4O_9
S3-1j	200	5	10	1000	10.42	U_4O_9
S3-1k	200	5	10	1500	10.51	U_4O_9

Table S3.2. The experimental parameters to control compositions (UAH=500mg, DI water =10mL, acetone=10mL, T=200,t=20h).

		,,).				
Sample	UAH	DI water	Acetone	$NH_3 \cdot H_2O$	nЦ	Products	
ID	mg	mL	mL	μL	рп		
S3-2a	500	10	10	100	5.72	$U_3O_8(major) + UO_2$	
S3-2b	500	10	10	200	6.7	U_3O_8	
S3-2c	500	10	10	300	7.5	$UO_2+U_3O_8$	
S3-2d	500	10	10	400	8.49	$UO_2+U_3O_8$	
S3-2e	500	10	10	500	8.86	$U_3O_8 + UO_2(major)$	
S3-2f	500	10	10	600	9.1	UO_2	

S3-2g	500	10	10	700	9.23	*UO2+U3O8(major)
S3-2h	500	10	10	800	9.3	UO_2
S3-2i	500	10	10	900	9.38	UO_2
S3-2j	500	10	10	1000	9.45	UO_2

* The solution was found leaked into AMT7, which lead acetone leakage.

The experiments listed in Tables S3.1 and S3.2 exhibited similar results when compared with Table S1despite changing the experimental conditions. The oxidation state of the final products decreased with increasing pH values. The U_4O_9 always appeared after UO_2 and with a shape of sphere, because it formed at a relatively higher reaction rate. Experiments listed in Table S3.1 did not yield pure U_3O_8 . The fact that we maintained the precursor (Table S3-1a S3-1b and S3-1c) for 6 hours might explain the increasing concentration of UAH. Experiments did not yield U_4O_9 (Table S3.1) even though the concentration of UAH increased further. The decrease of the MO generation rate could be ascribed by a decrease of the initial acetone concentration. * The U_3O_8 appeared in the Table S3-2g due to a major acetone leak. This reveals that

decreasing the fraction of acetone can reduce system efficiency.

			-).	L, $I = 200$ C	$JOIIIa = 500 \mu$	TomL, amm
Droducto	Time	NH ₃ ·H ₂ O	UAH	Acetone	DI water	Sample
Products	h	μL	mg	mL	mL	ID
Precursor	0.5	300	100	10	5	S4a
Precursor	1	300	100	10	5	S4b
UO ₂ +U ₃ O ₈	2	300	100	10	5	S4c
UO ₂ +U ₃ O ₈	3	300	100	10	5	S4d
UO ₂ +U ₃ O ₈	5	300	100	10	5	S4e
UO ₂	7	300	100	10	5	S4f

Table S4. The products at varying reaction times (UAH = 100 mg, DI water = 5 mL, acetone = 10mL, ammonia = $300 \ \mu$ L, T = $200 \ ^{\circ}$ C).

Note: This experiment cooled rapidly with flowing water, which inhibited the redox reaction and allowed us to retain information on the valence state.

Figure S4. SEM images of products at varying reaction times based on experiments listed in Table S4.

The experiments listed in **TableS4** showed that uranyl (VI) was reduced to $U(VI)O_2$ with sufficient time. The presence of U_3O_8 indicated that U(VI) and U(V) monomers must exist in the system when the system produces UO_2 . This confirms the existence of reduced bimonomer growth mechanism shown in Fig. 3a. Once the reaction stopped, U_3O_8 could not be removed when we restarted even at long reaction times. This is due to the fact that U_3O_8 is a stable phase and is difficult to dissolve into aqueous. However, $UO_3 \cdot H_2O$ was easy to remove due to its high solubility.

Sample	UAH	DI water	Acetone	NH ₃ ·H ₂ O	time	colid producto
ID	mg	mL	mL	μL	h	sond products
S5a	100	5	10	-	6	U ₃ O ₈ &UO ₃ ·H ₂ O
S5b	100	5	10	-	90	$U_3O_8+UO_2$
S5c	50	5	10	-	90	$U_3O_8+UO_2$
S5d	200	5	10	-	90	$U_3O_8+UO_2$
S5e	200	5	10	-	48	$U_3O_8+UO_2$
S5f	100	10	5	-	48	U_3O_8

Table S5. The experiments without the addition of ammonia.

Figure S5. SEM images of products without the addition of ammonia (based on experiments listed in Table S5).

Most products were mixtures that are listed in Table S5 and shown in Figure S5. The system was characterized by efficient reduction, similar to prior experiments, despite no addition of ammonia. This implies that uranium compounds may act as a catalyst to produce MO.

This is different from the experiments listed in Table S4, where U_3O_8 was still not eliminated after long reaction times (90h) even the experiments were never broke off. This result confirms the mechanism mentioned in Fig. 3b.

Figure S6. A schematic illustration of the classic LaMer theory. (modified with permission from reference¹, copyright 1950, American Chemical Society).

As described in the LaMer theory, the monomer concentration rapidly increases with time as the precursors reduced or decomposed. As the concentration approaches supersaturation, the monomer begins to aggregate into small clusters or starts self nucleate. Once formed, these nuclei then grow in an accelerated manner and the monomerconcentration drops quickly to below the level of minimum supersaturation. Afterward, no additional nucleationevents occur.

Section 3: Self-catalytic mechanisms and verified experiments

Figure S7. Main reaction pathways for acetone aldolization.²⁻⁷

Routes (5), (6) and (8) are redox reactions. DAA and MO can potentially act as actual

reducing agents. Subsequent GC-MS results showed that the major routes in system are (1),

(2), (3), (4), (6) and (7) which implies that MO was the actual reducing agent.

Table S6.1. GC-MS results for the organic products during the acetone reaction at 20	0°C
(t=20h).	

Sample	acetone	UAH	ammonia	organic products (area %)					
ID	mL	Mg	μl	DAA	IMO	MO	Phorone	Isophorone	
S6a	15	0	0	97.65%	-	-	-	-	
S6b	15	50	0	9.33%	-	22.71%	0.24%	30.75%	
S6c	15	50	200	1.70%	0.72%	73.40%	1.35	3.07%	

Note: This GC-MS result did not containacetone.

Table S6.2.GC-MS results for the organic products during the MO reaction at 200 °C (t=20h).

Sample	acetone	AA	UAH	Ammonia	organic products (area %)				
ID	mL	mL	mg	μL	Acetone	IMO	MO	Phorone	TMB
S6d	5	10	50	-	14.80	3.01	78.62	0.51	1.44
S6e	5	10	100	-	11.21	2.77	80.68	0.57	1.83
S6f	0	15	50	-	-	3.16	86.58	0.74	8.01

GC-MS results listed in **Table S6.1** show that acetone was transferred to DAA without the addition of UAH and ammonia. The aldol reaction is possible with the addition of UAH. The MO fraction was much higher after the addition of both UAH and ammonia. This implies that basic conditions are advantageous to the aldol reaction. The experiments listed in **Table S6.2** verify the MO's ability to reduce and indicated that the oxidation product of MO is

trimethylbenzene (TMB).

Sample	Reaction	Solid	organic products, detected by GC-MS (% area)						
ID	time	products	acetone	MO	DAA	AA	by-products		
S4a	0.5h	Precursor	77.66	1.79	13.06	-	7.49		
S4b	1h	Precursor	77.85	3.16	12.06	-	6.93		
S4c	2h	$UO_2+U_3O_8$	80.19	5.04	9.65	-	5.12		
S4d	3h	$UO_2+U_3O_8$	82.71	5.36	8.33	-	3.6		
S4e	5h	$UO_2+U_3O_8$	81.01	5.07	8.19	-	5.73		
S4f	7h	UO_2	83.06	3.58	4.45	7.72	1.19		
S4a	20	UO_2	-	-	-	-	-		

Table S7. GC-MS results for the organic products at different reaction time.

Note: Experimental conditions are listed in Table S4.

The GC-MS results listed in Table S7 reveal that the MO fraction increased with the

reaction time after the initial 3 hours. The decrease in the MO fraction later in the experiment

may be due to increasing side reactions and subsequent depletion in redox reactions.

Table So.1. GC-MS results of experiments in Table So.2.								
Sample	organic products (% area)							
ID	acetone	IMO	MO	DAA	acetic acid	by-products		
S8a	92.48	-	0.5	2.28	0.47	0		
S8b	91.14	-	1.18	7.41	0.26	0.01		
S8c	85.36	-	1.97	12.67	\checkmark	0		
S8d	84.95	-	1.29	13.67	\checkmark	0.09		
S8e	39.54	\checkmark	1.27	24.32	\checkmark	34.87		

 Table S8.1. GC-MS results of experiments in Table S8.2

Symbol ' $\sqrt{}$ ' means that this product was detected but the content was low (% area <0.01).

Samula	experiments conditions							
Sample	DI water	acetone	UAH	ammonia	time			
ID	mL	mL	mg	μL	h			
S8a	5	10	20	25	1			
S8b	5	10	20	50	1			
S8c	5	10	20	100	1			
S8d	5	10	20	500	1			
S8e	5	10	20	1000	1			

Table S8.2. Experiments to verify the self-catalytic mechanism.

The GC-MS results listed in Table S8.1 indicate that the MO proportion increased

simultaneously with the increasing pH values in the beginning. The proportion of by-products also visibly increased at higher pH values, which is the reason that the MO faction decreased at a higher pH values.

1. Chemicals

Uranyl acetate hydrate (UAH, 99%) was purchased from CAS`MART. Acetone (98%), mesityl oxide (MO, 99%), ammonia, were purchased from Aldrich.

2. Synthesis of uranium oxide nanocrystals

UAH (100mg) was dissolved in a mixture of DI water (5mL) and acetone (10mL) in a capped glass bottle under magnetic stirring. Ammonia range 25µL to 1500µLwas added in the solution to adjusting the pH value. Stirring for 5 minutes after the ammonia was added. The whole mixture was transferred into 30-ml Teflon-lined stainless steel autoclave and sealed. The autoclave was maintained at 200°C for 6 hours and cooled down naturally to room temperature. Solid products were formed at bottom of the autoclave. The precipitates were centrifuged, washed by ethanol and acetone, repeat several times.

Control experiments were carried out by adjusting the hydrothermal temperature, reaction time, concentration of UAH, the volume ratio of acetone to DI water and the volume of $NH_3 \cdot H_2O$, while the other reaction parameters were kept constant. Detailed parameters were showed in the tables.

3. Characterization

The surface morphologies of the powders were observed by field-emission scanning electron microscopy (FE-SEM) using ZIESS SUREA55 microscope. The XRD measurement were performed with a Philip X'Pert Pro diffractometer using Cu Kα radiation at 40kV and 45mA. Gas chromatography mass spectrum (GC-MS) measurement was performed with a SHIMADZU GCMS-QP2010 Plus instrument. The XPS measurement was performed with a Thermo Fisher Scientific ESCALAB 205XI using Al Kα radiation.

Reference

- 1. V. K. LaMer and R. H. Dinegar, *Journal of the American Chemical Society*, 1950, **72**, 4847-4854.
- 2. G. Zhang, H. Hattori and K. Tanabe, *Applied Catalysis*, 1988, **36**, 189-197.
- C. O. Veloso, J. L. F. Monteiro and E. F. Sousa-Aguiar, in *Studies in Surface Science and Catalysis*, eds. J. Weitkamp, H. G. Karge, H. Pfeifer and W. Hölderich, Elsevier, 1994, vol. 84, pp. 1913-1920.
- 4. W. Xu and D. Raftery, *Journal of Catalysis*, 2001, **204**, 110-117.
- 5. V. K. Díez, C. R. Apesteguía and J. I. Di Cosimo, *Journal of Catalysis*, 2006, **240**, 235-244.
- 6. H. Idriss, *Surface Science Reports*, 2010, **65**, 67-109.
- 7. E. Iglesia, D. G. Barton, J. A. Biscardi, M. J. L. Gines and S. L. Soled, *Catalysis Today*, 1997, **38**, 339-360.