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1. Fitting 𝐸𝐺𝐵 ‒ 𝑀(𝑟)

The unit cell of moiré superstructure of CVD grown graphene on Ru(0001) is generally quite 
large. According to our DFT calculations, the best commensurate structure consists of 12×12 
super cells of graphene matching 11×11 Ru(0001) surface cells, making it difficult to extract 
atomic position-dependent . Therefore, we first constructed a (1×1) commensurate 𝐸𝐺𝐵 ‒ 𝑀(𝑟)

model of graphene on a Ru(0001) surface by biaxially stretching/compressing the lattice 
constants of graphene/Ru(0001) surface by ~4%. We then obtained a map of EGB-M per 
primitive cell of graphene for the case of graphene sliding over the Ru(0001) surface, via DFT 
calculations, which is simply the sum of contributions from the two carbon atoms, labeled as A 
and B, in a primitive cell. Thus,  

.                    (1)𝐸 𝑐𝑒𝑙𝑙
𝐺𝐵 ‒ 𝑀(𝑟) = 𝐸𝐺𝐵 ‒ 𝑀(𝑟𝐴) + 𝐸𝐺𝐵 ‒ 𝑀(𝑟𝐵)

We next fit the with the following equation:𝐸𝐺𝐵 ‒ 𝑀(𝑟) 

,                      (2)𝐸𝐺𝐵 ‒ 𝑀(𝑟) = 𝐸 0
𝐺𝐵 ‒ 𝑀 + ∆𝐸𝐺𝐵 ‒ 𝑀(𝑟)

where  and represent, respectively, the average and position-dependent 𝐸 0
𝐺𝐵 ‒ 𝑀 ∆𝐸𝐺𝐵 ‒ 𝑀(𝑟) 

variance of the VDW energy between graphene and the Ru(0001) surface. Apparently, the 
 is a two-dimensional periodic function of the atomic position r, and considering the 𝐸𝐺𝐵 ‒ 𝑀(𝑟)

three-fold symmetry of graphene on Ru(0001), can be expanded as

                      (3)
𝐸𝐺𝐵 ‒ 𝑀(𝑟) = 𝐸 0

𝐺𝐵 ‒ 𝑀 + ∑
𝑘

𝛼𝑘𝑆𝑘(𝑟)

                            (4)
𝑆𝑘(𝑟) = ∑

{Λ}

𝑒𝑖Λ𝑘 ∙ 𝑟

where k is the reciprocal lattice vector of the Ru(0001) surface, while Λ is the point group 
rotation operator. The fitting performance and the best fitted  are shown in Fig. 2i 𝐸𝐺𝐵 ‒ 𝑀(𝑟)

and 2h, respectively. The  value reaches a minimum when the carbon atoms in 𝐸𝐺𝐵 ‒ 𝑀(𝑟)

graphene exactly locate over the Ru atoms, namely, at the four corner sites in Fig. 2i. The best 
fitting leads to the following expression for ,𝐸𝐺𝐵 ‒ 𝑀(𝑟)

𝐸𝐺𝐵 ‒ 𝑀(𝑟)
=‒ 1.300 × 10 ‒ 1 ‒ 7.365 × 10 ‒ 2[cos (𝑏1 ∙ 𝑟 + 144.44°) + cos ( ‒ 𝑏2 ∙ 𝑟 + 144.44°) + cos ((𝑏2 ‒ 𝑏1) ∙ 𝑟 + 144.44°)]
‒ 8.996 × 10 ‒ 2[cos ((𝑏1 + 𝑏2) ∙ 𝑟) + cos ((𝑏1 ‒ 2𝑏2) ∙ 𝑟) + cos ((𝑏2 ‒ 2𝑏1) ∙ 𝑟)]
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,                                                                        
(5)

where b1 and b2 are the basis vectors of the reciprocal lattice and r is the atomic position of the 
carbon atom.

2. Generation of GQDs with zigzag edges.

We mainly focus on GQDs with zigzag edges, since the outermost edge of HSGQDs has 
been experimentally found to be zigzag. The shapes of GQDs with zigzag edges can be triangle, 
parallelogram, trapezoid, or hexagon. The structures of zigzag-edged GQDs can be 
unambiguously defined based on the distance from center to the six outermost zigzag edges, 
termed di (i = 1 to 6). The quantity di is given in units of the distance between neighboring 
zigzag chains, so that the indices of (d1, d2, d3, d4, d5, d6) would uniquely determine a 
structure of GQD. Due to the ambiguity in selecting the central point, only four of the six 
distances are independent. For example, the structures of (6, 6, 6, 6, 6, 6) and (5, 5, 6, 7, 7, 6) 
are exactly the same. In addition, the number of unique indices can be greatly reduced by taking 
the rotation and mirror symmetry of the honeycomb lattice into consideration.

Figure S1. Structures of zigzag-edged GQDs determined based on the distances from the 
central point to the six outermost zigzag edges. 

3. Fitting 𝐸𝐺𝐸 ‒ 𝑀(𝑟)

In order to estimate the oscillation in the interaction between a graphene edge and the Ru(0001) 
surface, we use a fragment of a carbon cluster with a small segment of zigzag edges to represent 
the edge of GQD; the other edges are terminated by hydrogen atoms. We then move the carbon 
cluster along the in-plane directions to calculate the two-dimensional map of the formation 
energy of a zigzag edge, based on DFT method. Next, the  is fitted in the same 𝐸𝐺𝐸 ‒ 𝑀(𝑟)
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manner as , namely,𝐸𝐺𝐸 ‒ 𝑀(𝑟)

,                  (6)𝐸𝐺𝐸 ‒ 𝑀(𝑟) = 𝐸 0
𝐺𝐸 ‒ 𝑀 + ∆𝐸𝐺𝐸 ‒ 𝑀(𝑟)

Where  and  represent the minimum and oscillation of the formation energy 𝐸 0
𝐺𝐸 ‒ 𝑀 ∆𝐸𝐺𝐸 ‒ 𝑀(𝑟)

of a graphene edge on the Ru(0001) surface. Fig. 4j and 4d illustrate the fitting performance 
and the best fitted two-dimensional map of . Note that  has a lower 𝐸𝐺𝐸 ‒ 𝑀(𝑟) 𝐸𝐺𝐸 ‒ 𝑀(𝑟)

symmetry than  since zigzag graphene edges have only a mirror symmetry. The best 𝐸𝐺𝐸 ‒ 𝑀(𝑟),

fitting leads to the following expression for ,𝐸𝐺𝐸 ‒ 𝑀(𝑟)

𝐸𝐺𝐸 ‒ 𝑀(𝑟)
=‒ 1.283 + 0.202cos ( ‒ 𝑏2 ∙ 𝑟 ‒ 0.825°) ‒ 0.290[cos (𝑏1 ∙ 𝑟 + 64.838°) + cos ((𝑏2 ‒ 𝑏1) ∙ 𝑟 + 64.838°)]

,  (7)

where b1 and b2 are basis vectors of the reciprocal lattice, and r is the atomic position of a 
carbon atom.

4. Effect of GE-M oscillation on shapes of magic-sized GQDs.

Figure S2. Highly stable graphene quantum dots on Ru(0001) surface predicted assuming 
modulated graphene edge-metal interaction. (Left) Difference in formation energy between 
numerical values and that estimated by eq. 2. in which, the oscillation of EGB-M energies is set 
to be 0. (Right) Structures of GQDs corresponding to each of the local minima in left panel. 


