Supporting Information

Achieving high-performance Prussian blue analogue cathode with

ultra-stable redox reaction for ammonium ion storage

Chunyang Li,^{a,b} Wenqi Yan,^b Shishuo Liang,^c Peng Wang,^b Jing Wang,^c Lijun Fu,^{a,c} Yusong Zhu,^{a,c} Yuhui Chen,^{a,c,*} Yuping Wu,^{a,b,c,*} and Wei Huang^a

^aState Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China

^bInstitute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 210009, China

^cSchool of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China

Supporting Figures

Figure S1. CV comparison of ball-cutting Na-FeHCF electrode and griphite rod (current collector).

Figure S2. SEM images at different magnification: a,b) Na-FeHCF-0. c,d) Na-FeHCF-400. e,f) Na-FeHCF-800.

Figure S3. XRD patterns of Na-FeHCFs at various stirring speeds.

Figure S4. GCD profiles of ball-cutting Na-FeHCF nanocubes electrode at various current density.

Figure S5. SEM and TEM images of ball-cutting Na-FeHCF electrode after 50000 cycles.

Sample	Charge	Discharge capacity	Capacity retention	Reference
	carriers	(mAh g ⁻¹)		
$K_{0.71}Cu[Fe(CN)_6]_{0.72} \cdot 3.7H_2O$	K ⁺	59 (50 mA g ⁻¹), 40.1	83% after 40000	1
		(500 mA g ⁻¹)	cycles	
Na ₃ MnTi(PO ₄) ₃	Na ⁺	58.4 (29 mA g ⁻¹)	N.A.	2
$K_{0.1}Cu[Fe(CN)_6]_{0.7} \cdot 3.6H_2O$	Mg^{2+}	50 (100 mA g ⁻¹), 37	N.A.	3
		(1000 mA g ⁻¹)		
$K_{0.71}Cu[Fe(CN)_6]_{0.72} \cdot 3.7H_2O$	Zn ²⁺	56 (60 mA g ⁻¹), 44	75% after 100 cycles	4
		(600 mA g ⁻¹)		
KCu[Fe(CN) ₆] · 8H ₂ O	A1 ³⁺	62.8 (50 mA g ⁻¹), 46.9	54.9% after 1000	5
		(400 mA g ⁻¹)	cycles	
(NH ₄) _{1.47} Ni[Fe(CN) ₆] _{0.88} ·	$\mathrm{NH_4}^+$	60 (150 mA g ⁻¹), 22	74% after 1000 cycles	6
3.2H ₂ O		(1800 mA g ⁻¹)		
NaFe ^{III} [Fe ^{II} (CN) ₆]·2.7H ₂ O	NH4 ⁺	62 (250 mA g ⁻¹), 48	109% after 50000	This work
		(2000 mA g ⁻¹)	cycles	

Table S1. Performance comparison of ball-cutting Na-FeHCF nanocubes with some reported cathode for aqueous batteries.

Figure S6. FTIR analysis of ball-cutting Na-FeHCF electrode before cycling and after 2nd cycle.

Figure S7. Electrochemical performance of ball-cutting Na-FeHCF electrode for two electrons transferred: a) The CV curve at 5 mV s⁻¹. b) GCD profile at 0.25 A g⁻¹. c) rate performance. d) Long-term cycling performance at 1 A g⁻¹. The mass of active material is 1.1 mg.

Figure S8. SEM image of ball-cutting Na-FeHCF electrode for two electrons transferred after 2000 cycles.

Figure S9. Electrochemical performance of Na-FeHCF-0, Na-FeHCF-400, and Na-FeHCF-800: a) CV curves at 5 mV s⁻¹. b) GCD profiles at 0.25 A g⁻¹. c) rate performance. d) Long-term cycling performance at 2 A g⁻¹.

Figure S10. Nyquist and fitting plots: a) Na-FeHCF-0, b) Na-FeHCF-400, and c) Na-FeHCF-800 electrodes (insets are relationships between Z' and angular frequency). d) Corresponding equivalent electric circuit.

References

- [1] C. D. Wessells, R. A. Huggins, Y. Cui, Nat. Commun., 2011, 2, 550.
- [2] H. Gao and J. B. Goodenough, Angew. Chem. Int. Ed., 2016, 55, 12768-12772...
- [3] Y. Mizuno, M. Okubo, E. Hosono, T. Kudo, K. Oh-ishi, A. Okazawa, N. Kojima, R. Kurono, S. Nishimurac, A. Yamada, J. Mater. Chem. A, 2013, 1, 13055-13059.
- [4] R. Trócoli, F. L. Mantia, ChemSusChem, 2015, 8, 481-485.
- [5] S. Liu, G. L. Pan, G. R. Li, X. P. Gao, J. Mater. Chem. A, 2015, 3, 959-962.
- [6] X. Wu, Y. Qi, J. J. Hong, Z. Li, A. S. Hernandez, X. Ji, Angew. Chem. Int. Ed., 2017, 56, 13026-13030.