Supporting Information

Recognition-Gated Azobenzene Photoswitch

Yu Ouyang, Ziyong Yuan, Jiaobing Wang*

School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China

e-mail: wangjb5@mail.sysu.edu.cn

General remarks

Chemicals were purchased from Aldrich, J&K Chemical or Energy Chemical and were used without further purification. Freshly distilled tetrahydrofuran (THF), dichloromethane (DCM), and toluene were used for synthesis. Acetonitrile was dried using molecular sieve. Qingdao Haiyang silica gel (200-300 mesh) was used in flash chromatography. Technical grade solvents were used for extraction and chromatography. NMR spectra were obtained using a Bruker Avance 400 spectrometer (400 MHz). UV/Vis measurements were performed on a SHIMADZU UV-2600 spectrophotometer. Irradiation experiments were carried out using the monochromated (20 nm bandwidth) output of the Xe lamp of the SHIMADZU RF-5301 PC spectrophotometer or projector with a 440 nm filter as a light source. Mass spectra were measured on a Trace GC Ultra-DSQ LC-MS spectrometer. High-resolution mass spectra (HRMS) (ESI) were recorded on a Bruker Daltonics ESI-Q-TOF maXis 4G spectrometer.

Contents:

Synthesis	S2
Photoswitching of <i>trans-</i> 2	S4
Thermoisomerization of <i>cis</i> -1 and complex <i>cis</i> -1-Hg ²⁺	S5
Photoswitching of compound 3 and its mercury complex	S6
DFT calculation	S8
¹ H-NMR and ¹³ C-NMR spectra	S10

Synthesis

Scheme S1. Synthesis of switch 1: (a) 6, BaMnO₄, toluene, N₂, 80 $^{\circ}$ C, 2h; (b) 2-aminoethanol, MeCN, N₂, 80 $^{\circ}$ C, 2 h.

7. To a solution of compound **5** (*ref* 1) (0.27 g, 0.54 mmol) in 15 mL dry THF was added aldehyde **6** (*ref* 2) (0.23 g, 1.1 mmol) and acetic acid (0.5 ml). The solution was stirred at room temperature under a nitrogen atmosphere for 5 min. After this time, the solvent was removed under vacuum to obtain a brown oil and dry toluene (30 mL) and BaMnO₄ (0.24 g, 0.93 mmol) was added. The mixture was heated at 80 °C in a sealed flask under N₂ for 3h, then cooled and concentrated under vacuum to remove the solvent. The residue was purified by silica gel column chromatography using ethyl acetate/petroleum ether (1/3, v/v) as the eluant affording 0.14 g (0.21 mmol) of 7 (75%) as a red oil. ¹H NMR (CDCl₃): δ 8.32 (d, *J* = 8.4 Hz, 2H), 8.04 (d, *J* = 8.4 Hz, 2H), 7.96 (d, *J* = 7.2 Hz, 2H), 7.53 (m, 3H), 7.49 (s, 1H), 7.34 (s, 1H), 4.40 (s, 4H), 4.33 (s, 4H), 4.12 (m, 8H), 1.21 (t, *J* = 6.8 Hz, 12H); ¹³C NMR (CDCl₃) δ 170.7, 162.1, 153.7, 152.6, 147.5, 141.3, 140.3, 137.8, 131.5, 129.3, 129.1, 128.0, 123.4, 123.0, 112.3, 103.5, 60.7, 60.6, 53.5, 53.3, 14.2. MS: m/z calcd for C₃₅H₃₉N₅O₉Na [M+Na]⁺: 696.7; found: 696.2.

trans-**1**. Compound **7** (110 mg, 0.16 mmol) was added to a solution of dry acetonitrile (10 mL) and 2-aminoethanol (15 mL). The mixture was heated at 80 °C under N₂ for 2h. After cooling down to room temperature, the solvent and 2-aminoethanol were removed under vacuum. The residue was recrystallized in ethanol/ether to obtain compound **1** (44%) as a red solid. mp: 89-91 °C. ¹H NMR (DMSO-D6) δ 8.34 (d, *J* = 8.4 Hz, 2H), 8.19 (br, 4 H), 8.09 (d, *J* = 8.4 Hz, 2H), 7.97 (d, *J* = 7.2 Hz, 2H), 7.63 (m, 3H), 7.37 (s, 1H), 7.34 (s, 1H), 4.66 (br, 4H), 4.12 (s, 4H), 4.04 (s, 4H), 3.30 (m, 8H), 3.09 (m, 8H); ¹³C NMR (DMSO-D6) δ 170.5, 161.1, 153.4, 152.3, 147.3, 142.7, 141.3, 137.1, 132.5, 130.0, 129.4, 128.4, 123.9, 123.2, 111.5, 103.1, 60.1, 55.9, 41.8. HRMS: m/z calcd for C₃₅H₄₃N₉O₉Na [M+Na]⁺: 756.3081; found: 756.3080.

rans-2. 2-Aminophenol (180 mg, 1.29 mmol) and aldehyde **6** (180 mg, 0.86 mmol) were added to a solution of dry toluene (20 mL) and acetic acid (2 mL). The mixture was stirred at room temperature for 10 min. After this time, BaMnO₄ (0.14 g, 0.54 mmol) was added and the mixture was heated at 80 °C under N₂ for 4h. After cooling down to room temperature, the solvent was removed under vacuum. The residue was purified by silica gel column

chromatography using DCM/petroleum ether (1/3, v/v) as the eluant affording 70 mg (0.23 mmol) of **2** (27%) as a yellow solid. mp: 135-137 °C. ¹H NMR (CDCl₃) δ 8.46 (d, *J* = 8.4 Hz, 2H), 8.10 (d, *J* = 8.4 Hz, 2H), 8.00 (d, *J* = 7.2 Hz, 2H), 7.83 (m, 1H), 7.65 (m, 1H), 7.57 (m, 3H), 7.42 (m, 2H); ¹³C NMR (CDCl₃) δ 162.4, 154.2, 152.6, 151.0, 142.2, 131.7, 129.2, 129.1, 128.6, 125.5, 124.8, 123.4, 123.2, 120.2, 110.7. HRMS: m/z calcd for C₁₉H₁₄N₃O [M+H]⁺: 300.1137; found: 300.1135.

Scheme S2. Synthesis of switch 3: (a) 9, THF, N₂, rt, 18h; (b) 2-aminoethanol, MeCN, N₂, 80 °C, 2.5 h.

10. Compound **8** (*ref* 3) (310 mg, 0.64 mmol) and nitrosobenzene **9** (200 mg, 1.87 mmol) were added to a solution of dry THF (15 mL) and acetic acid (1.5 mL). The mixture was stirred at room temperature under nitrogen for 18 h. Then the mixture was poured into 100 mL water and extracted with DCM (2 ×100 mL). The combined organic phase was dried and the solvent was removed under vacuum. The residue was purified by silica gel column chromatography using pentane/ethyl acetate (3/1, v/v) as the eluant affording 140 mg (39%) of compound **10** as a red oil. ¹H NMR (CDCl₃) δ 7.88 (d, *J* = 7.6 Hz, 2H), 7,72 (s, 1H), 7.61 (d, *J* = 8.4 Hz, 1H), 7.52 (m, 3H), 7.16 (d, *J* = 8.4 Hz, 1H), 4.43 (s, 4H), 4.37 (s, 4H), 4.16 (m, 8H), 1.25 (t, *J* = 6.8 Hz, 12H); ¹³C NMR (CDCl₃) δ 170.7, 170.6, 152.8, 148.2, 144.4, 141.6, 130.3, 129.0, 122.6, 121.1, 119.2, 115.9, 60.7, 60.6, 52.4, 52.3, 14.2. MS: m/z calcd for C₂₈H₃₆N₄O₈ [M+Na]⁺: 579.2; found: 579.1.

trans-**3**. Compound **10** (130 mg, 0.23 mmol) was added to a solution of dry acetonitrile (7 mL) and 2-aminoethanol (15 mL). The mixture was heated at 80 °C under N₂ for 2.5 h. After cooling down to room temperature, the solvent and 2-aminoethanol were removed under vacuum. The residue was purified by silica gel column chromatography using methanol/DCM (1/4, v/v) as the eluant affording 110 mg (78%) of compound **3** as a red oil. ¹H NMR (DMSO-D6) δ 8.27 (br, 2H), 8.21 (br, 2H), 8.19 (br, 4 H), 7.83 (d, *J* = 8.0 Hz, 2H), 7.58 (t, *J* = 8.0 Hz, 2H), 7.47 (m, 3H), 7.00 (d, *J* = 8.4 Hz 1H), 4.63 (br, 4H), 4.16 (s, 4H), 4.04 (s, 4H), 3.30 (m, 8H), 3.08 (m, 8H); ¹³C NMR (DMSO-D6) δ 170.2, 152.6, 147.1, 145.3, 141.7, 131.0, 129.8, 122.6, 120.4, 118.7, 115.0, 60.1, 55.0, 54.6, 41.8, 41.7. HRMS: m/z calcd for C₂₈H₄₁N₈O₈Na [M+H]⁺: 617.3047; found: 617.3048.

Photoswitching of *trans-2*

Fig. S1 UV-vis absorption spectral changes of trans-2 (15 µM, DCM) upon irradiation at 365 nm.

Fig. S2 ¹H-NMR (400 MHz) spectral changes of *trans*-2 (1 mM, CDCl₃) upon irradiation at 365 nm. Resonance signals of *cis*-2 are marked in black.

Thermoisomerization of *cis*-1 and complex *cis*-1-Hg²⁺

Fig. S3 Thermo *cis*-to-*trans* transformation of *cis*-**1**-Hg²⁺ in phosphate (8.0 mM) buffered H₂O/ethanol solution (v/v, 8/2, pH = 7.5) at 25 °C. Inset: time dependent absorption changes at 365 nm ($t_{1/2}$ = 89 h).

Fig. S4 Thermo *cis*-to-*trans* transformation of *cis*-**1** in phosphate (8.0 mM) buffered H₂O/ethanol solution (v/v, 8/2, pH = 7.5) at 25 °C. Excess of EDTA (200 eq of **1**) was added to the *cis*-**1**-Hg²⁺ solution to yield *cis*-**1**. Inset: time dependent absorption changes at 400 nm ($t_{1/2} = 60$ h).

Photoswitching of compound 3 and its mercury complex

Fig. S5 UV-vis absorption spectral changes of *trans*-**3** (26 μ M) in H₂O/ethanol solution (v/v, 8/2) upon irradiation at 400 nm.

Fig. S6 ¹H-NMR (400 MHz) spectral changes of *trans*-**3** (1 mM, CD₃CN) upon irradiation at 400 nm. Resonance signals of *cis*-**3** are marked in black.

Note: Half-life for thermo *cis*-to-*trans* isomerization of *cis*-**3** in H₂O/ethanol solution (v/v, 8/2) at 25 °C was determined to be 5.6 min (spectral data not shown). In acetonitrile, the half-life is significantly longer ($t_{1/2} = 9.6$ h). It is known that thermo *cis*-to-*trans* isomerization of 4-dimethylaminoazobenzene derivative is faster than unmodified azobenzene (~ 2 days) and more sensitive to the polarity and pH of the solution (*ref* 4, 5).

Fig. S7 UV-vis absorption spectral changes of *trans*-3 (25 μ M) in H₂O/ethanol solution (v/v, 8/2) upon titration with Hg²⁺ ion (4 eq).

Fig. S8 UV-vis absorption spectral changes of complex *trans*-**3**-Hg²⁺ (25 μ M, 4 eq of Hg²⁺ added) in H₂O/ethanol solution (v/v, 8/2) upon irradiation at 320 nm.

Fig. S9 ¹H-NMR (400 MHz) spectral changes of complex *trans*-**3**-Hg²⁺ (0. 5 mM, D₂O/ethanol-D6, v/v, 8/2) upon irradiation at 400 nm. Resonance signals of complex *cis*-**3**-Hg²⁺ are marked in black. Excess of Hg²⁺ ion (8 eq) was added to obtain the complex.

DFT calculations

Fig. S10 Kohm-Sham frontier orbitals of **3** calculated at the B3LYP/ $6-31G^*$ level of theory (isovalue = 0.02). The receptor of **3** was simplified as tetramethyl-1,2-diamino benzene.

Note: compared with switch 1 (see Figure 5 in main text), the HOMO-LUMO orbitals of *trans*-3 were less separated in space, suggesting a substantial contribution of π - π * excitation to the electronic transitions.

	Calculation					
Compound	Transition	Wavelength (nm)	Energy (eV)	Oscillator strength		
1	S_0-S_1	457.56	2.7097	0.0000		
	S_0-S_2	352.65	3.5158	1.5065		
	S ₀ -S ₃	289.20	4.2871	0.1488		
	S_0-S_4	272.51	4.5498	0.0103		
	S ₀ -S ₅	266.93	4.6448	0.0143		
2	S_0-S_1	459.00	2.7012	0.0000		

Table S1. Summary of TD-DFT calculation for switch 1 and 2 at the S_0 structure at the CAM-B3LYP/6-31G* level.

S ₀ - S ₂	327.28	3.7883	1.5336
S ₀ -S ₃	267.60	4.6331	0.0152
S0-S4	263.72	4.7013	0.0143
S ₀ -S ₅	257.68	4.8115	0.0076

Compound	Transition	Coefficient of orbital						
1	S_0-S_1	HOMO-3	HOMO-3	HOMO-3				
		->LUMO	->LUMO+1	->LUMO+6				
		(0.66449)	(0.18688)	(-0.13794)				
	S_0-S_2	HOMO-2	HOMO-1	HOMO	HOMO			
		->LUMO	->LUMO	->LUMO	->LUMO+1			
		(-0.27378)	(0.12144)	(0.60155)	(-0.18025)			
	S ₀ -S ₃	HOMO-2	HOMO-1	HOMO-1	HOMO	HOMO	HOMO	
		->LUMO	->LUMO	->LUMO+1	->LUMO	->LUMO+1	->LUMO+4	
		(0.43862)	(-0.37846)	(0.11672)	(0.20517)	(-0.23086)	(-0.11751)	
	S0-S4	HOMO-6	HOMO-4	HOMO-2	HOMO-1	HOMO-1	HOMO	
		->LUMO	->LUMO	->LUMO	->LUMO	->LUMO+1	->LUMO+4	
		(-0. 19996)	(-0.18795)	(0.37362)	(0.40767)	(-0.22653)	(0.11353)	
	S0-S5	HOMO-7	HOMO-6	HOMO-2	HOMO-2	HOMO-1	HOMO-1	HOMO
		->LUMO	->LUMO	->LUMO	->LUMO+2	->LUMO	->LUMO+1	->LUMO+2
		(-0.13097)	(0.56100)	(0.13343)	(-0.16951)	(0.17180)	(-0.11787)	(0.15868)
2	S_0-S_1	HOMO-1	HOMO-1	HOMO-1				
		->LUMO	->LUMO+1	->LUMO+6				
		(0.66071)	(0.20111)	(-0.13858)				
	S_0-S_2	HOMO-2	HOMO-2	HOMO				
		->LUMO	->LUMO+1	->LUMO				
		(0.16053)	(0.10064)	(0.66084)				
	S0-S3	HOMO-6	HOMO-5	HOMO-2	HOMO			
		->LUMO+2	->LUMO	->LUMO	->LUMO+2			
		(0.12463)	(0.61959)	(0.11568)	(0.23897)			
	S_0-S_4	HOMO-4	HOMO-4	HOMO-2	HOMO			
		->LUMO	->LUMO+1	->LUMO+3	->LUMO+3			
		(0.60870)	(0.20346)	(-0.13076)	(-0. 12744)			
	S0-S5	HOMO-4	HOMO-3	HOMO-2	HOMO	HOMO		
		->LUMO	->LUMO	->LUMO	->LUMO	->LUMO+1		
		(-0.12463)	(-0.38906)	(0.42875)	(-0.11883)	(0.28362)		

Reference

- (1) J. Wang, X. Qian, J. Qian and Y. Xu Chem. Eur. J. 2007, **13**, 7543.
- (2) Y. Kim, M. Koh, D.-K. Kim, H.-S. Choi and S. B. Park, J. Comb. Chem. 2009, 11, 928.
- (3) Y. Liu, X. Dong, J. Sun, C. Zhong, B. Li, X. You, B. Liu and Z. Liu, *Analyst* 2012, **137**, 1837.

- (4) H. M. D. Bandara and S. C. Burdette, *Chem. Soc. Rev.* 2012, **41**, 1809.
- (5) E. Fischer and Y. Frei, J. Chem. Phys. 1957, 27, 328.

NMR Spectra

¹³C NMR spectrum of *trans*-1

¹³C NMR spectrum of *trans*-2

¹³C NMR spectrum of *trans*-3

