Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Copper-mediated sulfonylation of aryl iodides and bromides with

arylsulfonyl hydrazides in PEG-400

Department of Chemistry, Lishui University, Lishui, Zhejiang 323000, China

Xiangmei Wu*, Yan Wang

*E-mail: <u>lswxm7162@163.com</u>

Table of Contents

General information and experimental procedure S2

Analytical data S3

References S7

NMR spectra S8-S31

General information

Hydrogen nuclear magnetic resonance spectra (¹H NMR) was obtained at 300 MHz. Spectra was recorded in CDCl₃ solutions. Carbon-13 nuclear magnetic resonance spectra (¹³C NMR) was obtained at 75 MHz. Spectra was recorded in CDCl₃ solutions. Chemical shifts are reported in ppm relative to the TMS (¹H NMR) and to the solvent (¹³C NMR). Melting points were obtained of a XT4A melting point apparatus and were uncorrected. Gas chromatography mass spectra (GC/MS) were recorded on a Saturn 2000GC/MS instrument. Thin layer chromatography (TLC) was performed using Merck Silica Gel GF254, 0.25 mm thickness.

Experimental procedure

Preparation of arylsulfonyl hydrazides

Arylsulfonyl hydrazides were prepared according to a literature procedure[1]. Hydrazine monohydrate (80%) (275 mg, 4.4 mmol) was added water (260 mg) and was cooled to 0 °C. To this solution was added dropwise a solution of arylsulfonyl chloride (2.0 mmol) in THF (10 ml) at 0 °C. The mixture was further stirred at 0 °C for 30 min., followed by addition of diethyl ether (10 ml). The mixture was extracted with saturated brine (3×10 ml). The organic layer was dried over sodium sulfate, filtered through Celite. The combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel to provide the desired product.

General procedure for the coupling of aryl halides and arylsulfonyl hydrazide

Aryl halide (1.2 mmol), arylsulfonyl hydrazide (1.0 mmol), cupric acetate (1.0 mmol), and PEG-400 (2.0 ml) were taken in a 25 ml sealed tube. The reaction mixture was stirred at 100 °C for 12 hours in air. Water (10 ml) was added and then the mixture was extracted with EtOAc (4×10 ml). The extracts were combined and washed by brine (3×10 ml), dried over MgSO₄, filtered, and evaporated, and purified by chromatography on silica gel to obtain the desired products with ethyl acetate/hexane (v/v=1:3~1:0). The products were characterized by their spectral and analytical data and compared with those of the known compounds.

Analytical data

phenyl *p*-tolyl sulfone (Table 2, 3aa)[2]

¹H NMR (300 MHz, CDCl₃): δ 7.92 (d, *J*=6.6 Hz, 2H), 7.82 (d, *J*=8.1 Hz, 2H), 7.52-7.44 (m, 3H), 7.27 (d, *J*=8.1 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 144.2, 142.0, 138.6, 133.0, 129.9, 129.2, 127.7, 127.4, 21.5. GC-MS (EI, m/z): 232 [M+].

di-p-tolyl sulfone (Table 2, 3ab) [2]

¹H NMR (300 MHz, CDCl₃): δ 7.81 (d, *J*=8.4 Hz, 4H), 7.27 (d, *J*=8.1 Hz, 4H), 2.38 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 143.9, 139.0, 129.9, 127.5, 21.6. GC-MS (EI, m/z): 246[M+].

m-methylphenyl *p*-tolyl sulfone (Table 2, 3ac) [2]

¹H NMR (300 MHz, CDCl₃): δ 7.82 (d, *J*=8.4 Hz, 2H), 7.73-7.71 (m, 2H), 7.36-7.27 (m, 4H), 2.38 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 144.0, 141.8, 139.5, 138.8, 133.8, 129.8, 129.1, 127.8, 127.6, 124.6, 21.5, 21.3. GC-MS (EI, m/z): 246[M+].

o-methylphenyl p-tolyl sulfone (Table 2, 3ad) [3]

¹H NMR (300 MHz, CDCl₃): δ 8.19 (d, *J*=7.8 Hz, 1H), 7.74 (d, *J*=7.8 Hz, 2H), 7.46-7.20 (m, 5H), 2.44 (s, 3H), 2.39 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 144.3, 143.5, 139.2, 133.6, 133.0, 129.9, 129.6, 127.8, 127.5, 127.3, 21.6, 21.5. GC-MS (EI, m/z): 246[M+].

2,4,6-trimethylphenyl p-tolyl sulfone (Table 2, 3ae) [4]

¹H NMR (300 MHz, CDCl₃): δ 7.67 (d, *J*=8.4 Hz, 2H), 7.25 (d, *J*=7.8 Hz, 2H), 6.93 (s, 2H), 2.59 (s, 6H), 2.39 (s, 3H), 2.28 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 143.3, 143.2, 140.7, 140.0, 134.2, 132.2, 129.5, 126.3, 22.8, 21.5, 20.9. GC-MS (EI, m/z): 274[M+].

p-methoxyphenyl *p*-tolyl sulfone (Table 2, 3af) [5]

¹H NMR (300 MHz, CDCl₃): δ 7.87-7.78 (m, 4H), 7.26 (d, *J*=8.1 Hz, 2H), 6.94 (d, *J*=8.8 Hz, 2H), 3.82 (s, 3H), 2.37 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 163.2, 143.8, 139.3, 133.4, 129.9, 129.6, 127.3, 114.5, 55.7, 21.5. GC-MS (EI, m/z): 262[M+].

m-methoxyphenyl *p*-tolyl sulfone (Table 2, 3ag) [2]

¹H NMR (300 MHz, CDCl₃): δ 7.82 (d, *J*=8.4 Hz, 2H), 7.50-7.28 (m, 5H), 7.05 (d, *J*=8.1 Hz, 1H), 3.83 (s, 3H), 2.39 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 160.0, 144.2, 143.0, 138.5, 130.4, 129.9, 127.6, 119.7, 119.3, 112.1, 55.7, 21.6. GC-MS (EI, m/z): 262[M+].

o-methoxyphenyl p-tolyl sulfone (Table 2, 3ah) [3]

¹H NMR (300 MHz, CDCl₃): δ 8.11 (d, *J*=7.8 Hz, 1H), 7.84 (d, *J*=8.4 Hz, 2H), 7.50-7.49 (m, 1H), 7.26 (d, *J*=8.4 Hz, 2H), 7.06 (m, 1H), 6.88 (d, *J*=8.4 Hz, 1H), 3.73 (s, 3H), 2.37 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 157.1, 143.7, 138.8, 135.3, 129.5, 129.1, 128.3, 120.4, 112.7, 55.8, 21.5. GC-MS (EI, m/z): 262[M+].

m-methylthiophenyl p-tolyl sulfone (Table 2, 3ai)

¹H NMR (300 MHz, CDCl₃): δ 7.82 (d, *J*=8.4 Hz, 2H), 7.76 (s, 1H), 7.64-7.63 (m, 1H), 7.37-7.27 (m, 4H), 2.48 (s, 3H), 2.38 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 144.3, 142.6, 141.1, 138.4, 130.4, 130.0, 129.5, 127.7, 124.3, 123.7, 21.5, 15.4. GC-MS (EI, m/z): 278[M+].

p-fluorophenyl *p*-tolyl sulfone (Table 2, 3aj) [2]

¹H NMR (300 MHz, CDCl₃): *δ* 7.97-7.92 (m, 2H), 7.82 (d, *J*=8.1 Hz, 2H), 7.29 (d, *J*=8.1 Hz, 2H), 7.19-7.13 (m, 2H), 2.38 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): *δ* 165.3 (167.0, 163.6, d, *J* = 255.0 Hz), 144.4, 138.5, 138.1, 130.3, 130.0, 127.6, 116.5 (116.6, 116.3, d, *J* = 22.5 Hz), 21.5. GC-MS (EI, m/z): 250[M+].

m-fluorophenyl *p*-tolyl sulfone (Table 2, 3ak) [2]

¹H NMR (300 MHz, CDCl₃): δ 7.83 (d, *J*=8.1 Hz, 2H), 7.73 (d, *J*=7.8 Hz, 1H), 7.65-7.60 (m, 1H), 7.49-7.46 (m, 1H), 7.33-7.24 (m, 3H), 2.40 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 162.4 (164.1, 160.7, d, *J* = 255.0 Hz), 144.7, 144.0, 137.9, 131.2, 130.1, 127.8, 123.3, 120.3 (120.4, 120.2, d, *J* = 15.0 Hz), 114.8 (114.9, 114.6, d, *J* = 22.5 Hz), 21.6. GC-MS (EI, m/z): 250[M+].

p-chlorophenyl p-tolyl sulfone (Table 2, 3al) [2]

¹H NMR (300 MHz, CDCl₃): δ 7.89-7.80 (m, 4H), 7.43 (d, *J*=7.8 Hz, 2H), 7.28 (d, *J*=7.8 Hz, 2H), 2.38 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 144.5, 140.5, 139.6, 138.2, 130.1, 129.5, 129.0, 127.7, 21.6. GC-MS (EI, m/z): 267[M+].

m-chlorophenyl p-tolyl sulfone (Table 2, 3am) [6]

¹H NMR (300 MHz, CDCl₃): δ 7.91 (s, 1H), 7.90-7.80 (m, 3H), 7.51-7.40 (m, 2H), 7.32 (d, *J*=8.4 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 144.7, 143.8, 138.0, 135.4, 133.1, 130.5, 130.1, 127.8, 127.5, 125.6, 21.5. GC-MS (EI, m/z): 267 [M+].

o-chlorophenyl p-tolyl sulfone (Table 2, 3an)

¹H NMR (300 MHz, CDCl₃): δ 8.33 (d, *J*=8.3 Hz, 1H), 7.83 (d, *J*=8.1 Hz, 2H), 7.50-7.38 (m, 3H), 7.29 (d, *J*=8.1 Hz, 2H), 2.39 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 144.6, 138.6, 137.1, 134.6, 132.7, 132.0, 130.8, 129.5, 128.6, 127.3, 21.6. GC-MS (EI, m/z): 267 [M+].

3,5-dichlorophenyl p-tolyl sulfone (Table 2, 3ao) [6]

¹H NMR (300 MHz, CDCl₃): *δ* 7.84-7.79 (m, 4H), 7.50 (s, 1H), 7.36-7.34 (m, 2H), 2.43 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): *δ* 145.1, 137.4, 136.2, 132.9, 130.2, 128.0, 125.9, 21.6. GC-MS (EI, m/z): 302[M+]

p-bromophenyl *p*-tolyl sulfone (Table 2, 3ap) [2]

¹H NMR (300 MHz, CDCl₃): δ 7.83-7.78 (m, 4H), 7.61 (d, *J*=8.4 Hz, 2H), 7.30 (d, *J*=7.8 Hz, 2H), 2.39 (s, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ 144.6, 141.0, 138.1, 132.5, 130.1, 129.0, 128.2, 127.7,

21.6. GC-MS (EI, m/z): 311[M+].

p-iodophenyl p-tolyl sulfone (Table 2, 3aq)

¹H NMR (300 MHz, CDCl₃): *δ* 7.95-7.92 (m, 2H), 7.83 (d, *J*=8.1 Hz, 2H), 7.54-7.45 (m, 2H), 7.29 (d, *J*=8.1 Hz, 2H), 2.38 (s, 3 H). ¹³C NMR (75 MHz, CDCl₃): *δ* 144.2, 142.0, 138.6, 133.0, 129.9, 129.2, 127.7, 127.5, 21.5. GC-MS (EI, m/z): 358[M+].

o-aminophenyl p-tolyl sulfone (Table 2, 3ar) [7]

¹H NMR (300 MHz, CDCl₃): δ 7.83-7.78 (m, 3H), 7.29-7.24 (m, 3H), 6.79-6.76 (m, 1H), 6.64-6.62 (m, 1H), 5.12 (s, 2H), 2.37 (s, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ 146.2, 143.8, 139.1, 134.7, 129.8, 129.6, 126.9, 122.4, 117.7, 117.6, 21.4. GC-MS (EI, m/z): 247[M+].

2-pyridyl-*p*-tolyl sulfone (Table 2, 3as) [5]

¹H NMR (300 MHz, CDCl₃): δ 8.68 (s, 1H), 8.04-7.96 (m, 2H), 7.84-7.82 (m, 2H), 7.55-7.52 (m, 1H), 7.28-7.25 (m, 2H), 2.37 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 157.6, 150.7, 145.8, 139.5, 134.8, 130.4, 128.6, 128.2, 123.3, 21.9. GC-MS (EI, m/z): 233[M+].

2-thiophyl-p-tolyl sulfone (Table 2, 3at) [3]

¹H NMR (300 MHz, CDCl₃): δ 7.86 (d, *J*=8.4 Hz, 2H), 7.67-7.60 (m, 2H), 7.30 (d, *J*=8.1 Hz, 2H), 7.07-7.04 (m, 1H), 2.39 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 144.4, 143.5, 139.1, 133.6, 133.0, 130.0, 127.8, 127.3, 21.6. GC-MS (EI, m/z): 238[M+].

diphenyl Sulfone (Table 2, 3ba) [8]

¹H NMR (300 MHz, CDCl₃): δ 7.96-7.94 (m, 4H), 7.59-7.48 (m, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 141.5, 133.2, 129.3, 127.7. GC-MS (EI, m/z): 218 [M+].

`OCH₃

p-methoxyphenyl phenyl sulfone (Table 2, 3bb) [8]

¹H NMR (300 MHz, CDCl₃): δ 7.93-7.86 (m, 4H), 7.52-7.48 (m, 3H), 6.98-6.95 (m, 2 H), 3.83 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 163.4, 142.3, 133.1, 132.9, 129.9, 129.2, 127.3, 114.5, 55.7. GC-MS (EI, m/z): 248 [M+].

p-fluorophenyl phenyl sulfone (Table 2, 3bc) [8]

¹H NMR (300 MHz, CDCl₃): δ 7.99-7.92 (m, 4H), 7.58-7.49 (m, 3H), 7.21-7.15 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 165.4 (167.1, 163.7, d, J = 255 Hz), 141.4, 137.7, 133.4, 130.5 (130.5, 130.4, d, J = 7.5 Hz), 129.4, 127.6, 116.7 (116.8, 116.5, d, J = 22.5 Hz). GC-MS (EI, m/z): 236 [M+].

p-chlorophenyl phenyl sulfone (Table 2, 3bd) [8]

¹H NMR (300 MHz, CDCl₃): *δ* 7.95-7.87 (m, 4H), 7.58-7.45 (m, 5H). ¹³C NMR (75 MHz, CDCl₃): *δ* 141.1, 140.1, 139.9, 133.5, 129.6, 129.5, 129.1, 127.6. GC-MS (EI, m/z): 253 [M+].

References

1. X. Z. Yu, X. W. Li and B. S. Wan. Org. Biomol. Chem., 2012, 10, 7479-7482.

2. S. Cacchi, G. Fabrizi, A. Goggiamani and L. M. Parisi, Org. Lett., 2002, 4, 4719-4721.

3. B. P. Bandgar, S. V. Bettigeri and J. Phopase. Org. Lett., 2004, 13, 2105-2108.

4. B. M. Choudary, N. S. Chowdari and M. L. Kantam, J. Chem. Soc., Perkin Trans. 1, 2000, 2689-2693.

5. B. T. V. Srinivas, V. S. Rawat, K. Konda and B. Sreedhar, *Adv. Synth. Catal.*, 2014, **356**, 805-817.

6. S. H. Gund, R. S. Shelkar, J. M. Nagarkar, RSC Adv., 2015, 5, 62926-62930.

7. J. Kato, H. Kakehata, Y. Maekawa and T. Yamashita, Chem. Commun., 2006, 4498-4500.

8. N. Umerski, G. Manolikakes, Org. Lett., 2013, 15, 188-191.

3aa

3ah

3ai

3ak

3am

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

ao

3ap

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

