Electronic Supplemental Materials

Sensitive 3-chlorophenol sensor development based on facile ${\rm Er_2O_3/CuO}$ nanomaterials for environmental safety

Tahir Ali Sheikh^{a,b}, Mohammed M. Rahman^{a,b,*}, Abdullah M. Asiri^{a,b}, Hadi M. Marwani^{a,b}

^aChemistry department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi

Arabia

^bCenter of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King

Abdulaziz University, Jeddah 21589, Saudi Arabia

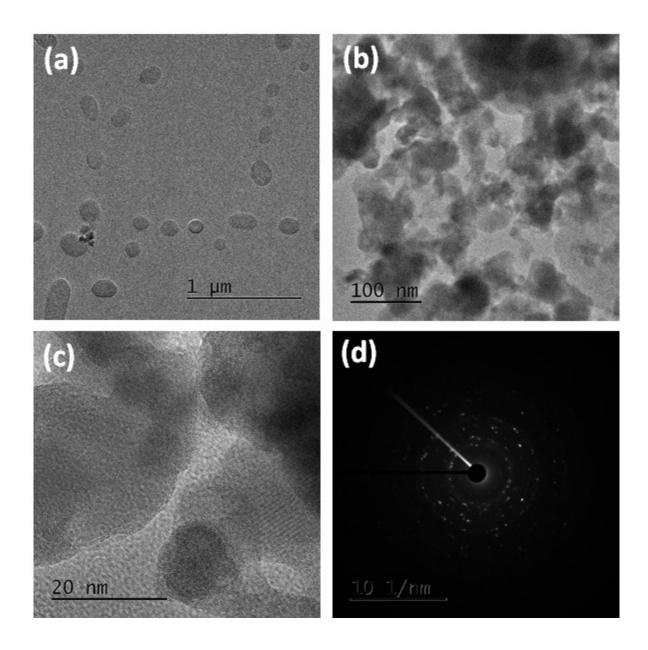
*Corresponding address:

Dr. M.M. Rahman,

Center of Excellence for Advanced Materials Research &


Chemistry Department, Faculty of Science,

King Abdulaziz University, Jeddah 21589,


P.O. Box 80203, Saudi Arabia

Email: mmrahman@kau.edu.sa&mmrahmanh@gmail.com

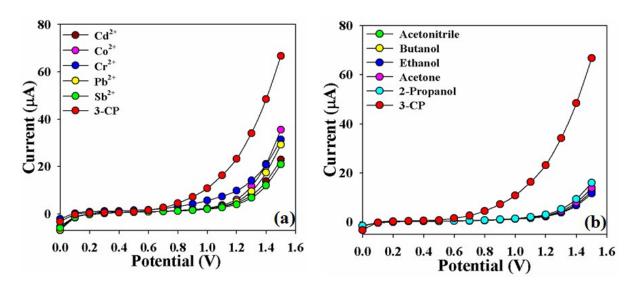

Phone: +966-59-6421830; Fax: +966-026952292

Fig. S1: Evaluation of binding energy analysis (XPS) for Erbium oxide-Copper oxide doped nanomaterials at normal condition (a) Er₂O₃/CuO nanomaterials (b) Cu2p (c) O1s (d) Er4d.

Fig. S2. TEM analysis. (a-b) Low-to-high magnified image of Er₂O₃/CuO nanomaterial, (c) High-resolution TEM image of Er₂O₃/CuO nanomaterial with lattice fringes (0.16 nm), and (c) SAED pattern images of corresponding structures indicated with a colored arrow.

Fig. S3: Selectivity; (a) Current response of inorganic ions in the presence of 3-CP and analytes concentration were taken at 0.1 μ M (b) Current response of organic compounds in the presence of 3-CP and analytes concentration were taken at 0.1 μ M

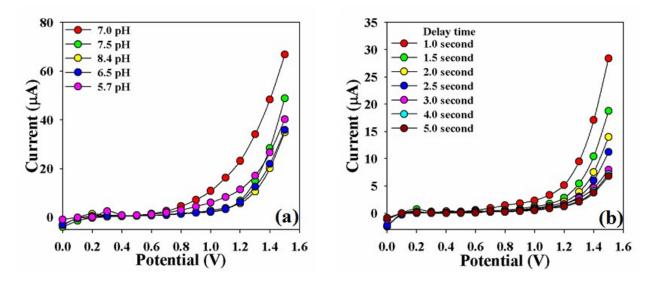


Fig S4: optimization of operational condition; (a) Effect of pH and (b) scan rate

Table S1: Interference Effect of various toxic chemicals on Er₂O₃/CuO NBs/Nafion/GCE

Toxic Chemicals	Observed Current (μA)				Interference	SD	RSD (%)
	R1	R2	R3	Average	effect (%)	(n=3)	(n=3)
<u>3-CP</u>	<u>4.5612</u>	<u>4.6783</u>	<u>4.5159</u>	<u>4.5851</u>	<u>100</u>	<u>0.083</u>	<u>1.82</u>
2,4-DNP	2.9195	2.9019	2.8673	2.8962	63	0.026	0.91
2-NP	0.6455	0.6528	0.6549	0.6510	14	0.004	0.75
3-MP	2.4977	2.4285	2.5683	2.4981	54	0.069	2.79
4-AP	0.6532	0.6094	0.6396	0.6340	13	0.022	3.53
4-MP	1.6978	1.6835	1.6937	1.6916	36	0.007	0.43
BPA	1.0244	1.0623	1.1463	1.0776	23	0.062	5.78
HDN	1.0406	1.0738	1.0635	1.0593	23	0.016	1.60
Ph-HDN	2.5749	2.5796	2.5978	2.5841	56	0.012	0.46
p-NP	1.6187	1.6039	1.6168	1.6131	35	0.008	0.49

[&]quot;Interference effect of 3-CP is consider to be 100 %; R = reading; SD = standard deviation; and RSD = relative standard deviation."