Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Facile microwave synthesis, structural diversity and herbicidal activity of six novel alkaline-earth metal complexes (AECs) based on skeletal isomerization chlorophenoxyacetic acids

Xiuling Xu,[‡] Fan Hu,[‡] Yuwei Ma, Jinming Gao*, and Qi Shuai*

Fig. S1 ¹HNMR spectra of *o*-HCPA

Fig. S3 HRMS spectra of compounds *o*-HCPA.

Fig. S5 ¹³CNMR spectra of *m*-HCPA

Fig. S6 HRMS spectra of compounds *m*-HCPA.

Fig. S7 ¹HNMR spectra of *p*-HCPA

Fig. S9 HRMS spectra of compounds *p*-HCPA.

Fig. S11 IR spectra of complex 2.

Fig. S15 IR spectra of complex 6.

Fig. S16 The PXRD graph for complex 1 ((a) modulated by Mercury; (b) observed.)

Fig. S17 The PXRD graph for complex 2 ((a) modulated by Mercury; (b) observed.)

Fig. S18 The PXRD graph for complex $\mathbf{3}$ ((a) modulated by Mercury; (b) observed.)

Fig. S19 The PXRD graph for complex 4 ((a) modulated by Mercury; (b) observed.)

Fig. S20 The PXRD graph for complex 5 ((a) modulated by Mercury; (b) observed.)

Fig. S21 The PXRD graph for complex 6 ((a) modulated by Mercury; (b) observed.)

Table S1. Selected bond lengths (Å) and angles (°) for 1-6.

1				
1		1		

Sr(1)-O(4W)	2.570(6)	Sr(1)-O(1)	2.685(5)
Sr(1)-O(2)A	2.572(5)	Sr(1)-O(2W)C	2.726(5)
Sr(1)-O(1W)	2.590(6)	Sr(1)-O(2W)	2.773(5)
Sr(1)-O(1)B	2.637(5)	Sr(1)-O(3W)B	2.844(5)
Sr(1)-O(3W)	2.673(5)		
O(4W)-Sr(1)-O(2)A	72.42(18)	O(3W)-Sr(1)-O(1)	61.89(16)
O(4W)-Sr(1)-O(1W)	88.4(2)	O(4W)-Sr(1)-O(2W)	139.10(17)
O(2)B-Sr(1)-O(1W)	69.8(2)	O(2)A-Sr(1)-O(2W)	66.70(16)
O(4W)-Sr(1)-O(3W)	137.50(17)	O(1W)-Sr(1)-O(2W)	78.79(19)
O(2)A-Sr(1)-O(3W)	134.48(18)	O(3W)-Sr(1)-O(2W)	77.21(16)
O(1W)-Sr(1)-O(3W)	77.0(2)	O(1)-Sr(1)-O(2W)	136.78(15)
O(1)B-Sr(1)-O(3W)	61.61(16)	O(2W)C-Sr(1)-O(2W)	82.98(15)
O(4W)-Sr(1)-O(1)	76.31(18)	O(3W)-Sr(1)-O(3W)B	93.11(14)
O(2)A-Sr(1)-O(1)	135.78(16)	O(2W)-Sr(1)-O(3W)B	141.68(15)
O(1W)-Sr(1)-O(1)	79.0(2)	O(1)B-Sr(1)-O(1)	88.99(14)
		2	
Ba(1)-O(3)A	2.724(2)	Ba(1)-O(1W)	2.894(2)
Ba(1)-O(5)B	2.782(3)	Ba(1)-O(3)	2.904(2)
Ba(1)-O(6)C	2.828(2)	Ba(1)-O(2)	2.938(2)
Ba(1)-O(1W)C	2.848(2)	Ba(1)-O(4)	3.054(2)
Ba(1)-O(6)	2.872(2)		
O(3)A-Ba(1)-O(5)B	88.69(7)	O(5)B-Ba(1)-O(2)	85.43(7)
O(5)B-Ba(1)-O(1W)C	74.65(7)	O(6)-Ba(1)-O(2)	126.00(6)
O(5)B-Ba(1)-O(6)	72.62(6)	O(1W)-Ba(1)-O(2)	120.97(7)
O(6)C-Ba(1)-O(6)	123.43(6)	O(3)-Ba(1)-O(2)	44.65(6)
O(5)B-Ba(1)-O(1W)	141.12(7)	O(5)B-Ba(1)-O(4)	69.06(7)
O(1W)C-Ba(1)-O(1W)	135.67(4)	O(6)-Ba(1)-O(4)	52.12(6)
O(6)-Ba(1)-O(1W)	68.73(6)	O(1W)-Ba(1)-O(4)	89.98(7)
O(3)A-Ba(1)-O(3)	132.32(5)	O(3)-Ba(1)-O(4)	109.20(6)
O(5)B-Ba(1)-O(3)	123.22(7)	O(2)-Ba(1)-O(4)	74.08(7)
O(6)-Ba(1)-O(3)	152.62(6)	O(1W)-Ba(1)-O(3)	94.09(7)
		3	
Sr(1)-O(1W)	2.548(5)	Sr(1)-O(6)B	2.588(5)
Sr(1)-O(4W)	2.553(5)	Sr(1)-O(2W)	2.646(5)
Sr(1)-O(6)	2.562(5)	Sr(1)-O(3W)	2.660(5)
Sr(1)-O(5)A	2.585(4)	Sr(1)-O(3W)C	2.717(5)
O(1W)-Sr(1)-O(4W)	138.99(19)	O(5)A-Sr(1)-O(2W)	67.07(15)
O(1W)-Sr(1)-O(6)	74.60(16)	O(1W)-Sr(1)-O(3W)	75.88(17)
O(4W)-Sr(1)-O(6)	74.40(19)	O(4W)-Sr(1)-O(3W)	143.80(18)
O(1W)-Sr(1)-O(5)A	73.08(15)	O(6)-Sr(1)-O(3W)	119.02(16)
O(4W)-Sr(1)-O(5)A	123.9(2)	O(5)A-Sr(1)-O(3W)	66.50(15)
O(6)-Sr(1)-O(5)A	144.32(15)	O(6)B-Sr(1)-O(3W)	76.50(15)

O(6)-Sr(1)-O(6)B	73.02(17)	O(2W)-Sr(1)-O(3W)	132.65(16)
O(1W)-Sr(1)-O(2W)	82.47(17)	O(3W)-Sr(1)-O(3W)C	86.36(15)
O(4W)-Sr(1)-O(2W)	73.7(2)	O(6)-Sr(1)-O(2W)	94.13(15)
		4	
Ba(1)-O(5)A	2.700(4)	Ba(1)-O(1W)	2.840(4)
Ba(1)-O(3W)	2.779(6)	Ba(1)-O(1W)B	2.853(4)
Ba(1)-O(4)B	2.808(4)	Ba(1)-O(2W)A	2.862(4)
Ba(1)-O(4)	2.823(4)	Ba(1)-O(2W)	2.871(4)
Ba(1)-O(4W)	2.826(5)		
O(5)A-Ba(1)-O(3W)	72.70(18)	O(4)B-Ba(1)-O(1W)B	59.25(11)
O(5)A-Ba(1)-O(4)	134.41(12)	O(1W)-Ba(1)-O(1W)B	90.61(11)
O(3W)-Ba(1)-O(4)	129.9(2)	O(4)-Ba(1)-O(2W)A	77.38(11)
O(4)B-Ba(1)-O(4)	89.36(10)	O(5)A-Ba(1)-O(2W)	69.37(13)
O(5)A-Ba(1)-O(4W)	73.14(16)	O(3W)-Ba(1)-O(2W)	141.67(15)
O(3W)-Ba(1)-O(4W)	97.4(2)	O(4)-Ba(1)-O(2W)	76.92(11)
O(4)-Ba(1)-O(4W)	127.85(16)	O(4W)-Ba(1)-O(2W)	76.85(15)
O(5)A-Ba(1)-O(1W)	133.38(15)	O(1W)-Ba(1)-O(2W)	133.91(10)
O(3W)-Ba(1)-O(1W)	72.24(18)	O(4)-Ba(1)-O(1W)	59.25(11)
		5	
Sr(1)-O(2)A	2.473(3)	Sr(1)-O(1W)	2.571(4)
Sr(1)-O(5)B	2.512(3)	Sr(1)-O(4)C	2.591(3)
Sr(1)-O(1)	2.513(3)	Sr(1)-O(5)C	2.821(3)
Sr(1)-O(4)	2.570(3)	Sr(1)-O(3)	2.948(3)
O(2)A-Sr(1)-O(5)B	96.84(11)	O(4)-Sr(1)-O(4)C	69.97(11)
O(2)A-Sr(1)-O(1)	137.87(11)	O(1W)-Sr(1)-O(4)C	77.79(12)
O(5)B-Sr(1)-O(1)	85.08(11)	O(5)B-Sr(1)-O(5)C	75.14(10)
O(2)A-Sr(1)-O(4)	79.66(10)	O(4)-Sr(1)-O(5)C	116.03(9)
O(5)B-Sr(1)-O(4)	163.48(11)	O(1W)-Sr(1)-O(5)C	76.16(11)
O(1)-Sr(1)-O(4)	86.85(11)	O(2)A-Sr(1)-O(3)	80.19(9)
O(2)A-Sr(1)-O(1W)	72.77(11)	O(5)B-Sr(1)-O(3)	91.91(10)
O(5)B-Sr(1)-O(1W)	86.33(13)	O(1)-Sr(1)-O(3)	57.69(10)
O(1)-Sr(1)-O(1W)	148.99(12)	O(4)-Sr(1)-O(3)	71.61(10)
O(4)-Sr(1)-O(1W)	107.70(13)	O(1W)-Sr(1)-O(3)	152.46(10)
O(5)A-Sr(1)-O(4)C	122.90(9)		
		6	
Ba(1)-O(4)	2.666(3)	Ba(1)-O(1)C	2.813(4)
Ba(1)-O(5)A	2.705(4)	Ba(1)-O(1)	2.742(5)
Ba(1)-O(2)B	2.707(5)	Ba(1)-O(2)C	2.947(5)
Ba(1)-O(1W)	2.708(11)	Ba(1)-O(3)	3.193(3)
O(4)-Ba(1)-O(5)A	129.26(12)	O(1)-Ba(1)-O(1)C	111.79(10)
O(4)-Ba(1)-O(2)B	78.8(2)	O(1W)-Ba(1)-O(1W')	28.1(4)
O(5)A-Ba(1)-O(2)B	109.47(16)	O(2)B-Ba(1)-O(2)C	112.75(12)
O(4)-Ba(1)-O(1W)	152.3(3)	O(1W)-Ba(1)-O(2)C	83.3(3)
O(5)A-Ba(1)-O(1W)	78.4(3)	O(1)-Ba(1)-O(2)C	67.17(12)
O(2)B-Ba(1)-O(1W)	91.0(3)	O(4)-Ba(1)-O(3)	52.66(9)

O(4)-Ba(1)-O(1)	78.46(18)	O(5)A-Ba(1)-O(3)	76.68(10)
O(5)A-Ba(1)-O(1)	81.14(14)	O(2)B-Ba(1)-O(3)	92.84(15)
O(2)B-Ba(1)-O(1)	156.59(14)	O(1W)-Ba(1)-O(3)	154.7(3)
O(1W)-Ba(1)-O(1)	111.8(3)	O(1)-Ba(1)-O(3)	68.77(12)
O(4)-Ba(1)-O(1)C	80.50(14)	O(1W)-Ba(1)-O(1)C	71.8(3)
O(2)B-Ba(1)-O(1)C	69.59(13)		

Symmetry transformations used to generate equivalent atoms in 1: A x-1, y, z; B -x+1, -y+1, -z; C -x, -y+1, -z; in 2: A -x, y-1/2, -z+1/2; B -x, -y+1, -z; C -x, y+1/2, -z+1/2; in 3: A x-1, y, z; B -x+1, -y+1, -z+1; C -x, -y+1, -z+1; in 4: A -x+1, -y+1, -z; B -x+2, -y+1, -z; in 5: A x-1, y, z; B x, y-1, z; C -x+2, -y+1, -z; in 6: A x+1, y, z; B x, y-1, z; C -x, y-1/2, -z+1.

D–H···A	<i>d</i> (D–H)	<i>d</i> (H···A)	<i>d</i> (D···A)	∕ DHA
		1		
O1W-	0.96	2.16	3.054(10)	155
O2W-	0.97	1.97	2.892(7)	158
O2W-	0.97	1.95	2.867(7)	157
O3W-	0.97	1.87	2.793(8)	158
O3W-	0.97	1.95	2.901(8)	166
O4W-	0.96	2.08	2.947(8)	150
O4W-	0.96	1.99	2.877(8)	153
		2		
O1W-	0.97	1.88	2.751(3)	148
O1W-	0.97	1.89	2.817(3)	160
O2W-	0.85	2.79	3.0474(3)	138
O2W-	0.93	2.15	2.713(3)	118
		3		
01W-	0.96	1.85	2.753(7)	155
01W-	0.96	2.53	2.991(7)	109
01W-	0.96	2.27	3.205(7)	166
O2W-	0.96	2.53	3.152(7)	122
O2W-	0.96	2.04	2.938(7)	155
O3W-	0.97	1.96	2.928(6)	172
O3W-	0.97	2.02	2.776(6)	134
O4W-	0.96	2.02	2.966(9)	168
O4W-HWB…O3	0.96	2.19	2.823(8)	123
		4		
01W-	0.85	2.04	2.820(6)	152
01W-	0.85	2.10	2.841(6)	145
O2W-	0.85	1.97	2.780(6)	160
O2W-	0.85	2.03	2.842(6)	160
O3W-	0.96	2.10	2.984(8)	152
O3W-	0.96	2.24	2.92(2)	127
O3W-	0.96	1.73	2.587(17)	146
O4W-	0.85	2.30	2.843(7)	122

Table S2. Bond lengths (Å) and angles (°) of hydrogen-bond for $\mbox{1-6}.$

5									
O1W-	0.96	1.98	2.861(5)	151					
O1W-	0.96	2.34	3.192(6)	147					
		6							
Cl15-H15B…O5	5 0.97	2.46	3.347(8)	152					

Table S3. Themal decomposition data of the complexes 1-6.

				*** * 1.1		Final solid		
Complex	Stage	Weight loss	Temperature	Weight lo	oss rate/%	products		
		process	Range/(°C)	Found	calcd	Found	calcd	
	Ι	(H ₂ O) ₄	25.00~175.73	13.57	13.56	Sr	0	
1	II	collapse	175.73~379.10	66.02	66.02	19.50	10.50	
	III	collapse	379.10~648.07	00.95	00.92		19.52	
	Ι	$(\mathrm{H_2O})\mathrm{H_2O}$	25.00~177.25	6.59	6.61	Ba	Ю	
2	II	collapse	177.25~359.14	(5.24	(5.00)	29.17	29.16	
	III collapse		359.14~668.67	65.24	03.23	20.17	28.16	
3	Ι	(H ₂ O) ₄	25.00~181.35	13.55	13.56	SrO		
	II	collapse	181.35~375.82	(())	(())	10.51	10.52	
	III	collapse	375.80~657.44	66.94	66.92	19.51	19.32	
	Ι	$[(\mathrm{H_2O})_4]_2 \cdot \mathrm{H_2O}$	25.00~198.76	15.25	15.27	BaO		
4	II	collapse	198.76~340.43	59.70	50.70	26.05	26.01	
	III	collapse	340.43~620.51	58.70	58.72	26.05	26.01	
	Ι	(H ₂ O)	25.00~148.26	3.77	3.78	Sr	0	
5	II	collapse	148.26~347.45	5 4 5 1	54.40	01.70		
	III collapse		347.45~738.80	74.51	74.49	21.72	21.73	
	Ι	(H ₂ O)	25.00~153.87	3.43	3.42	Ba	0	
6	II	collapse	153.87~369.42			20.12	20.12	
	III	collapse	369.42~672.41	67.45	67.46	29.12	29.12	

	Germination rate				Shoot elongation (RI)				Root elongation (RI)			
	50	100	150	200	50	100	150	200	50	100	150	200
o-CPA	0.58	0.92	0.92	1.00	-0.49	-0.30	-0.15	-0.39	-0.56	-0.60	-0.62	-0.85
1	0.92	1.00	1.00	0.75	-0.32	-0.32	-0.43	-0.76	-0.09	-0.24	-0.43	-0.69
2	0.92	1.00	1.00	1.00	-0.84	-0.84	-0.85	-0.83	-0.93	-0.95	-0.95	-0.95
<i>m</i> -CPA	0.92	1.00	1.00	0.92	-0.49	-0.63	-0.78	-0.82	-0.90	-0.94	-0.90	-0.91
3	0.58	0.92	1.00	1.00	-0.74	-0.73	-0.70	-0.76	-0.90	-0.93	-0.93	-0.95
4	0.83	0.75	0.83	1.00	-0.82	-0.89	-0.88	-0.88	-0.94	-0.91	-0.93	-0.92
<i>p</i> -CPA	1.00	1.00	1.00	0.92	-0.61	-0.69	-0.77	-0.78	-0.94	-0.93	-0.95	-0.94
5	1.00	1.00	0.58	1.00	-0.83	-0.84	-0.74	-0.79	-0.68	-0.70	-0.92	-0.93
6	1.00	0.92	1.00	1.00	-0.76	-0.79	-0.83	-0.82	-0.87	-0.83	-0.87	-0.87
gp	1.00	1.00	0.63	0.67	-0.21	-0.35	-0.54	-0.85	-0.66	-0.7549	-0.86	-0.95
ck	0.83	0.92	0.92	1.00								

Table S4. Allelopathic Effects on edible Amaranth (Amaranthus spp.) of ligands and complexes