Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

New Journal of Chemistry

Supplementary information

Effect of electron transfer on the photocatalytic hydrogen evolution efficiency of faceted $TiO_2/CdSe$ QDs under visible light

Weiwei Chen^a, Shan Yu^{a^{*}}, Yunqian Zhong^a, Xiang-Bing Fan^c, Li-Zhu Wu^c, Ying Zhou^{a,b,*}

^{*a*} *The* Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China.

^b State Key Laboratory of Oil and Gas Reservoir and Exploitation, Southwest Petroleum University, Chengdu 610500, China.

^c Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing 100190, P. R. China

^{*}To whom correspondence should be addressed.

E-mail: yzhou@swpu.edu.cn; yushan@mail.ipc.ac.cn;

Contents

- 1. Preparation of CdSe QDs, $\{001\}$ -TiO₂ and $\{101\}$ -TiO₂
- 2. Absorption spectra of supernatant of CdSe QDs with or without TiO₂
- 3. The photocatalytic hydrogen evolution activity of different $TiO_2/CdSe$ QDs
- 4. Stability test of of {001}-TiO₂/CdSe QDs
- 5. References.

1. Preparation of CdSe QDs, {001}-TiO₂ and {101}-TiO₂

1.1 Synthesis of water soluble CdSe QDs

Water soluble CdSe QDs was synthesized according to literature.¹⁻³ Firstly Na₂SeSO₃ stock solution was prepared as the selenium source. Typically, 189 mg Na₂SO₃ were dissolved in 100 mL deionized water, and then 40 mg selenium powder was added. After deoxygenated with Ar for 30 min, the system was refluxed for 3-4 h until all the selenium powder was dissolved.

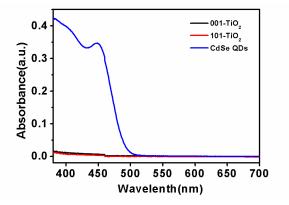
46 mg of $CdCl_2 \cdot 2.5H_2O$ were dissolved in 190 mL deionized water, and 3-mercaptopropionic acid (26 µL) was added in a 500 mL round-bottom flask. Then the pH value of system was adjusted to 11 by NaOH aqueous solution (10 M). After deoxygenated with argon gas for 30 min, the freshly prepared Na₂SeSO₃ aqueous solution (10 mL) was added into the system. Afterwards, the system was deoxygenated with Ar for 30 min again and then refluxed for 4 h at 130 °C. Finally, the light green-yellow aqueous solution of CdSe QDs was obtained.

1.2 Synthesis of TiO₂ Nanocrystals with Different Facets

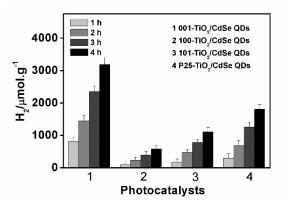
1.2.1 Synthesis of Ti(OH)₄ precursor

The synthesis of Ti(OH)₄ precursor was accomplished by sol-gel process.⁴ 6.6 mL of TiCl₄ were dispersed into 20 mL aqueous HCl solution (0.43 M) in an ice bath to yield the clear solution. The solution was then slowly dropped to 5.5 wt% aqueous $NH_3 \cdot H_2O$ in an ice bath with stirring, which yield the white suspension. 4 wt% aqueous $NH_3 \cdot H_2O$ were dropped into it to adjust the pH value to 6.85. After aging at room temperature (25 °C) for 2 h, the precipitate was filtrated and washed with absolute ethanol and deionized water for at least 3 times, and AgNO₃ aqueous solution (0.05 M) was then used to detect the existence of chloride in the system. Eventually, the products were dried at 60 °C in air for 12 h.

1.2.2 Synthesis of {101}-TiO₂

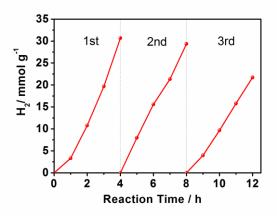

 $\{101\}$ -TiO₂ were prepared by hydrothermal method.⁴ In detail, 2 g newly

prepared Ti(OH)₄ and 0.2 g NH₄Cl were dispersed in a mixed solution of isopropyl alcohol and water (30 mL, 1:1 v/v) and stirred for 30 min. Then the system was transferred into a 50 mL Teflon-lined stainless steel autoclave and heated for 24 h at 180 °C. After that, the suspension were separated by filtration and then washed with ethanol and deionized water for at least 3 times. Finally, the samples were dried for 12 h at 60 °C.


1.3 Synthesis of {001}-TiO₂

In a typical procedure according to the references, ⁵⁻⁶ 3.75 mL of Ti(OC₄H₉)₄ was added into a dried Teflon-lined stainless steel autoclave with a capacity of 15 mL. Then 0.6 mL of HF solution was slowly dropped into the above liquid. The mixture was heated to 200 °C and kept for 24 h in oven. After reaction, the white precipitate was separated by centrifugation. Then the products were washed thoroughly with absolute ethanol, 1 M NaOH aqueous solution and deionized water for at least 3 times to remove the residual fluoride. After dried at 60 °C in air for 12 h and cooled down to room temperature, {001}-TiO₂ with clean surface were obtained.

2. Absorption spectra of supernatant of CdSe QDs with or without TiO₂


Fig. S1 The absorption spectra of the aqueous solution of QDs before and after interaction with $\{001\}$ -TiO₂ and $\{101\}$ -TiO₂.

3. The photocatalytic hydrogen evolution activity of different TiO₂/CdSe QDs

Fig. S2 The evolution hydrogen amount of 5 mg of different CdSe QDs/TiO₂ composite containing with 0.4 mg Ni²⁺ in 10 mL of isopropanol /H₂O (1:1 v/v) under visible-light ($\lambda \ge 420$ nm) 500 W high-pressure mercury lamp (I = 15.56 mW cm⁻²) at pH = 11.

4. Stability test of of {001}-TiO₂/CdSe QDs

Fig. S3 Stability test of {001}-TiO₂/CdSe QDs for photocatalytic hydrogen evolution. Reaction conditions: 2 mg of {001}-TiO₂/ CdSe QDs; sacrificial donor: isopropanol (1:1, v/v) in 7 mL of aqueous solution; cocatalyst: 0.2 mg Ni²⁺ at pH 11; λ = 410 nm, I = 150 mW/cm², LED light.)

5. References:

- 1 H. Y. Han, Z. H. Sheng and J. G. Liang, *Mater. Lett.*, 2006, **60**, 3782-3785.
- 2 S. Yu, Z. J. Li, X. B. Fan, J. X. Li, F. Zhan, X. B. Li, Y. Tao, C. H. Tung and L. Z. Wu, *ChemSusChem*, 2015, **8**, 642-649.
- Z. J. Li, J. J. Wang, X. B. Li, X. B. Fan, Q. Y. Meng, K. Feng, B. Chen, C. H. Tung and L.
 Z. Wu, Adv. Mater., 2013, 25, 6613-6618.
- 4 J. M. Peng, Y. Zhou, H. Wang, H. Zhou and S. Y. Cai, *CrystEngComm*, 2015, **17**, 1805-1812.
- 5 L. C. Liu, X. R. Gu, Y. Cao, X. J. Yao, L. Zhang, C. J. Tang, F. Gao and L. Dong, ACS *Catal.*, 2013, **3**, 2768-2775.
- X. H. Yang, Z. Li, G. Liu, J. Xing, C. H. Sun, H. G. Yang and C. Z. Li, *CrystEngComm*, 2011, 13, 1378-1383.