Supporting Information

Facile one-step synthesis of highly luminescent N-doped carbon dots as efficient fluorescence probe for chromium (VI) detection based on inner filter effect

Haitao Wang,^{a,b,c} Shan Liu,^{a,b,c} Yisha Xie,^{a,b,c} Jingran Bi,^{a,b,c} Yao Li,^{a,b,c} Yukun Song,^{a,b,c} Shasha Cheng,^{a,b,c} Dongmei Li, ^{a,b,c} Mingqian Tan^{a,b,c*}

^aSchool of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China ^bNational Engineering Research Center of Seafood, Dalian, Liaoning 116034, People's Republic of China ^cEngineering Research Center of Seafood of Ministry of Education of China, Dalian,

Liaoning 116034, People's Republic of China

* To whom correspondence should be addressed. E-mail: M. Tan, 2468750030@qq.com

Figure S1 As-prepared reaction mixtures (left) and the starting materials (right) under

irradiation with visible (A) and UV light (B).

Figure S2. Photographs of the CG-CDs power under irradiation with visible (left) and UV light (right).

Figure S3. Photograph of the CG-CDs aqueous solution under irradiation with visible

(left) and UV light (right)

Figure S4. Plots of integrated fluorescence (FL) intensity of quinine sulfate (referenced dye) and CG-CDs synthesized from citric acid and glycine as a function of optical absorbance at 340 nm.

Figure S5 Fluorescence decay spectra and fitting curves of CG-CDs.

Figure S6. Effects of pH value on the fluorescence intensity of CG-CDs within 120 min.

Figure S7. Effects of ionic strength of NaCl on the fluorescence intensity of CG-CDs within 120 min.

Figure S8. Photostability of fluorescence intensity for CG-CDs under continuous excitation at 340 nm for 30 min.

Figure S9. Fluorescence decay and fitting curves of CG-CDs in the presence of Cr (VI) (200 μ M).

Figure S10. The UV-vis absorption spectra of CG-CDs, Cr(VI), CG-CDs- Cr(VI) mixtures and the sum value of absorbance of CG-CDs and Cr(VI).

Figure S11. TEM image (A) and size distribution histogram (B) of CG-CDs in present of chromium (VI) (100 μ mol L⁻¹), the average size was 2.6 nm, which is similar to the pure CG-CDs.

Figure S12. Fluorescence intensity response of CG-CDs in the presence of 200 μ M solution of various metal ions. The blank represents the fluorescence response of the solution of CG-CDs without adding any metal ion. The concentration of each kind of ion was 100 μ M.

		Qı	iinine Sul	fate		CDs				
Abs	0.017	0.037	0.046	0.06	0.093	0.018	0.035	0.053	0.068	0.082
Integrated FL	31662	46722	61250	76330	114662	32756	65095	92882	124230	145645
lope	1.27×10 ⁶					1.79×10 ⁶				
QY	55%					78%				
FL:		fluore	scence;		QY	·:		quantur	n	yield

Table S1. Parameters for QY calculation

Methods	Time consumption	Linear detection range	Detection limit	Reference
Fluorescence method with carbon dot	1 min	0.01-50 μΜ	/	[1]
Electrochemical detection based on gold nanoparticles	/	0.1 - 105 μM	0.03 μΜ	[2]
Colorimetric method with gold nanoparticle	30 min	0.1-20 μM	0.088 µM	[3]
Fluorescence method with AlQx modified SBA-15	/	0.32-5.8 μM	7.7 nM	[4]
Colorimetric method with Ce(VI) and 1,5-DPC modified Paper microfluidic devices	10 min	0.23-3.75 μg (4.42-7.2 μmol)	0.12 μg (2.31μmol)	[5]
Colorimetric method with silver nanoparticle	/	1 nM-1 mM	1 nM	[6]
Fluorescence method with graphitic carbon nitride nanosheets	10 min	0.6-300 µM	0.15 μΜ	[7]
boron and nitrogen co-doped carbon dots	1 min	1.39-260 μM	0.28 µM	[8]
nitrogen and sulfur co-doped carbon dots	10 min	2-160 μM	1.72 μM	[9]

Table S2. The comparison of the determination of Cr(VI)

References

1. Zheng, M.; Xie, Z.; Qu, D.; Li, D.; Du, P.; Jing, X.; Sun, Z., On–off–on fluorescent carbon dot nanosensor for recognition of chromium(vi) and ascorbic acid based on the inner filter effect. *ACS Appl. Mater. Interfaces* **2013**, *5*, 13242-13247.

2. Jin, W.; Wu, G.; Chen, A., Sensitive and selective electrochemical detection of chromium(VI) based on gold nanoparticle-decorated titania nanotube arrays. *Analyst* **2014**, *139*, 235-241.

3. Li, F.-M.; Liu, J.-M.; Wang, X.-X.; Lin, L.-P.; Cai, W.-L.; Lin, X.; Zeng, Y.-N.; Li, Z.-M.; Lin, S.-Q., Non-aggregation based label free colorimetric sensor for the detection of cr (VI) based on selective etching of gold nanorods. *Sensor. Actuat. B: Chem.* **2011**, *155*, 817-822.

 Hosseini, M.; Gupta, V. K.; Ganjali, M. R.; Rafiei-Sarmazdeh, Z.; Faridbod, F.;
Goldooz, H.; Badiei, A. R.; Norouzi, P., A novel dichromate-sensitive fluorescent nano-chemosensor using new functionalized SBA-15. *Ana. Chim. Acta* 2012, *715*, 80-85.

5. Rattanarat, P.; Dungchai, W.; Cate, D. M.; Siangproh, W.; Volckens, J.; Chailapakul, O.; Henry, C. S., A microfluidic paper-based analytical device for rapid quantification of particulate chromium. *Ana.Chim. Acta* **2013**, *800*, 50-55.

6. Ravindran, A.; Elavarasi, M.; Prathna, T. C.; Raichur, A. M.; Chandrasekaran, N.; Mukherjee, A., Selective colorimetric detection of nanomolar Cr (VI) in aqueous solutions using unmodified silver nanoparticles. *Sensor. Actuat. B: Chem.* **2012**, *166–167*, 365-371.

7. Rong, M.; Lin, L.; Song, X.; Wang, Y.; Zhong, Y.; Yan, J.; Feng, Y.; Zeng, X.; Chen, X., Fluorescence sensing of chromium (VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent "switch". *Biosens. Bioelectron.* **2015**, *68*, 210-217.

8. Tian, T.; He, Y.; Ge, Y.; Song, G., One-pot synthesis of boron and nitrogen codoped carbon dots as the fluorescence probe for dopamine based on the redox reaction between cr(vi) and dopamine. *Sensor. Actuat. B: Chem.* **2017**, *240*, 1265-1271.

9. Chen, J.; Liu, J.; Li, J.; Xu, L.; Qiao, Y., One-pot synthesis of nitrogen and sulfur co-doped carbon dots and its application for sensor and multicolor cellular imaging. *J. Colloid Interface Sci.* **2017**, *485*, 167-174.