Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supplementary Material

Synthesis of petal-like δ -MnO₂ and its catalytic ozonation performance

Kai Luo a, b, Shi-Xi Zhao a*, Yi-Feng Wang a, b, Shu-Jin Zhao a, c, Xi-Hui Zhanga

^a Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China

^b School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China

^c School of Materials Science and Engineering, Jiamusi University, Jiamusi, 154007, China

E-mail address: zhaosx@sz.tsinghua.edu.cn (S.-X. Zhao).

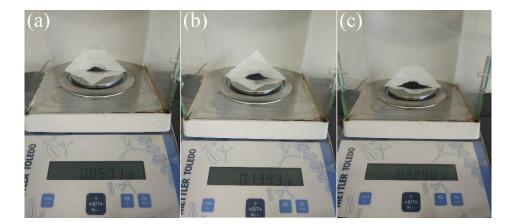
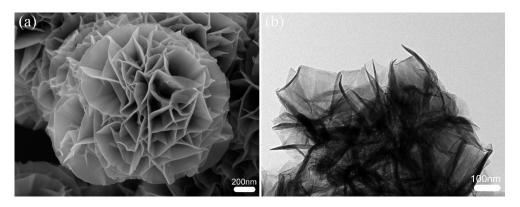
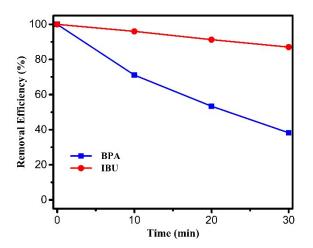




Fig. S1 The quality of the preparation of samples: (a) δ-MnO₂-C0.1-12, (b) δ-MnO₂-C0.1-18,(c) δ-MnO₂-C0.1-24.

^{*} Corresponding author.

Fig. S2 The higher magnification image of δ -MnO₂-C0.1-24: (a) SEM, (b) TEM.

Fig. S3 Ozonation of BPA and IBU without catalyst. Reaction conditions: $[BPA]_0 = 10$ ppm, $[IBU]_0 = 10$ ppm, ozone concentration: 4 mg/L, ozone flow rate: 0.2 L/min.

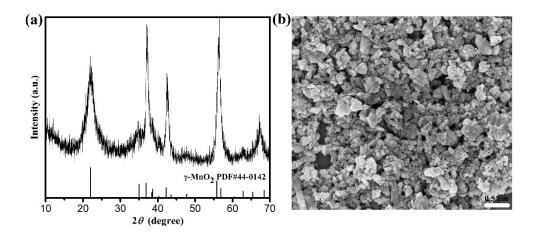


Fig. S4 (a) XRD patterns and (b) SEM image of the commercial MnO₂.