Electronic Supplementary Information

Synthesis and Characterization of Cyano and Isocyano Complexes of Bis(dithiolato) Molybdenum Using Me₃SiCN: A Route to A Cyanide-Bridged Multimer to A Monomer.

Moumita Bose^a, Golam Moula^a, Ameerunisha Begum^a and Sabyasachi Sarkar^{b*}

^[a] Department of Chemistry, Indian Institute of Technology, Kanpur, Kanpur-208016, Uttar Pradesh, India.

^[b] Nanoscience and Synthetic Leaf Laboratory at Downing Hall, Centre for Healthcare Science and Technology Indian Institute of Engineering Science and Technology-Shibpur Botanic Garden, Howrah 711103, West Bengal.

Table of Contents

	<u>Contents</u>	Page
1.	Infrared spectra	S3
2.	³¹ P NMR	S4-S5
3.	Magnetism of the Complex 4	S 6
4.	Electrochemistry of the Complex 5	S 6
5.	Tentative Mechanisms for the Formation of the Complexes 3-5	S7-S8
6.	TD-DFT Results	S9-S13
7.	Optimized Coordinates of [(mnt)2(PPh3)Mo(µ-CN)Mo(PPh3)(mnt)2] ¹⁻	S14-S15
8.	Optimized Coordinates of [Mo(PPh ₃)(CN)(mnt) ₂] ¹⁻	S16
9.	Optimized Coordinates of [Mo(CNSiMe ₃) ₂ (mnt) ₂]	S17
10.	Energy of the complex [Mo(CNSiMe3)2(mnt)2] (5) and [Mo(NCSiMe3)2(mnt)2]	S18

1. Infrared spectra

Figure S1. IR spectrum of [Et₄N][(mnt)₂(PPh₃)Mo(µ-CN)Mo(PPh₃)(mnt)₂].2CH₂Cl₂.C₆H₆.H₂O (3)

Figure S2. IR spectrum of [Et₄N] [Mo(PPh₃)(CN)(mnt)₂].CH₂Cl₂ (4)

2. ³¹P NMR

Figure S3. ³¹P NMR of [Et₄N][(mnt)₂(PPh₃)Mo(µ-CN)Mo(PPh₃)(mnt)₂].2CH₂Cl₂.C₆H₆.H₂O (3)

Figure S4. ³¹P NMR of [Et₄N][Mo(PPh₃)(CN)(mnt)₂].CH₂Cl₂ (4)

3. Magnetism of the Complex 4:

Figure S5: Magnetic moment of the complex 4 as measured under an applied field of 1000 G using a SQUID magnetometer.

4. Electrochemistry of the Complex 5:

Figure S6: Cyclic voltammetric traces; reductive scan for the complex 5 in dichloromethane.

5. Tentative Mechanisms for the Formation of the Complexes 3-5

Scheme S1. A tentative mechanism for the formation of the complex (3).

Scheme S2. A tentative mechanism for the formation of the complex (4).

Scheme S3. A tentative mechanism for the formation of the complex (5).

Figure S7. Kohn–Sham orbitals of the complex [Et₄N][(mnt)₂(PPh₃)Mo(μ-CN)Mo(PPh₃)(mnt)₂].2CH₂Cl₂.C₆H₆.H₂O (**3**) involved in TD-DFT vertical transitions.

State	Energy (eV)	Main excitation(%) ^(a)	Assignment(f) ^(b)	$\begin{array}{c} TD\text{-}DFT\\ \lambda_{max}\\ (nm)^{(c)} \end{array}$	Exp. λ _{max} (nm)
S_4 S_5	2.0986 2.1228	$H-1 \rightarrow L(46)$ $H\rightarrow L+3(17)$ $H-1\rightarrow L(27)$ $H\rightarrow L+3(31)$	ML'MLCT(0.0873) ML'MLCT(0.0572)	590 584	549
S ₁₄	2.7924	H-3→L+1(82)	ML'MLCT(0.0248)	444	
S ₁₆	2.8480	$H-5 \rightarrow L(13)$ H- $4 \rightarrow L(40)$ H- $1 \rightarrow L+3(14)$	LMCT ML'MCT (0.0678)	435	409
S ₁₇	2.9445	$\begin{array}{ccc} \text{H-7} \rightarrow \text{L}(11) & \text{H-} \\ 6 \rightarrow \text{L}(23) & \text{H-} \\ 1 \rightarrow \text{L+3}(15) & \end{array}$	LMCT ML'MCT (0.0698)	421	
					-
\mathbf{S}_{40}	3.3134	H-4→L+2(74)	L'MLCT(0.0427)	374	
S ₄₉	3.4205	H-8 \to L+1(16) H- 5 \to L+3(32)	L'MLCT ML'MCT(0.0652)	362	339

^(a) H and L denote HOMO and LUMO, respectively. ^(b) The values between in parentheses indicate oscillator strength, f. ^(c) In solution phase (dichloromethane).

Figure S8. Kohn–Sham orbitals of the complex $[Et_4N][Mo(PPh_3)(CN)(mnt)_2]$.CH₂Cl₂ (4) involved in TD-DFT vertical transitions.

State	Energy (eV)	Main excitation(%) ^(a)	Assignment(f) ^(b)	$\begin{array}{c} \textbf{TD-DFT}\\ \boldsymbol{\lambda_{max}}\\ (\textbf{nm})^{(c)} \end{array}$	Exp. λ _{max} (nm)
S_3	2.2993	H-1→L(86)	ML'MLCT (0.0452)	539	504
S_6	2.9434	$\begin{array}{ccc} H-3 \to L(30) & H-\\ 2 \to L(43) & H-\\ 1 \to L+1(14) & \end{array}$	L'MLCT ML'MLCT (0.0296)	421	
S_7	2.9884	H→L+3(72)	MLCT (0.0352)	414	405
\mathbf{S}_8	3.0205	$\begin{array}{ll} H-3 \rightarrow L(34) & H-\\ 1 \rightarrow L+1(19) & \\ H \rightarrow L+3(21) & \end{array}$	L'MLCT ML'MLCT MLCT(0.1326)	410	
					_
S ₁₅	3.4747	H-2 \to L+1(61) H- 1 \to L+3(11)	ML'MLCT ML'LCT (0.0518)	356	333
\mathbf{S}_{22}	3.7421	H-3→L+1(56)	LMCT(0.0645)	331	

Table S2. TD-DFT calculations based on ground state geometry of the complex[Et₄N][Mo(PPh₃)(CN)(mnt)₂].CH₂Cl₂ (4)

⁽a) H and L denote HOMO and LUMO, respectively. (b) The values between in parentheses indicate oscillator strength, f. (c) In solution phase (dichloromethane).

Figure S9. Kohn–Sham orbitals of the complex $[Mo^{IV}(CNSiMe_3)_2(mnt)_2]$ (5) involved in TD-DFT vertical transitions.

State	Energy (eV)	Main excitation	n(%) ^(a)	Assigr	ament(f) ^(b)	$\frac{TD\text{-}DFT}{\lambda_{max}\left(nm\right)^{(c)}}$	Exp. λ _{max} (nm)
2	2.1684	H→L(95)		ML'MLCT	(0.0634)	571	565
3	2.5059	H-2→ L (87) L+1(10)	Н→	ML'MLCT	(0.1246)	494	513
6	3.1011	H→L+1(86)		ML'MLCT	(0.1881)	399	395
16	3.9376	$\begin{array}{c} \text{H-3} \rightarrow \text{L+1(31)} \\ \text{2} \rightarrow \text{L+2(64)} \end{array}$	H-	L'MLCT (0.0329)	ML'LCT	314	
17	4.0521	$ \begin{array}{l} \text{H-10} \rightarrow \text{L(64)} \\ 8 \rightarrow \text{L(16)} \\ 2 \rightarrow \text{L+1(11)} \end{array} $	H- H-	L'MLCT (0.0396)	ML'MLCT	305	330
31	4.6224	H-4→L+2(63) 3→L+3(25)	H-	LLCT (0.35	82)	268	262
33	4.7823	$\begin{array}{l} \text{H-5} \rightarrow \text{L+1(42)} \\ \text{3} \rightarrow \text{L+1(20)} \end{array}$	H-	L'MLCT (0.	1753)	259	202

Table S3. TD-DFT calculations based on optimized geometry of the complex [Mo(CNSiMe₃)₂(mnt)₂] (5)

^(a) H and L denote HOMO and LUMO, respectively. ^(b) The values between in parentheses indicate oscillator strength, f. ^(c) In solution phase (dichloromethane).

7. Optimized Coordinates of $[(mnt)_2(PPh_3)Mo(\mu-CN)Mo(PPh_3)(mnt)_2]^{1-}$

C C Н С Н С Н С Н С Н С С Н С Н С Н С Н С Н С С Н С Н С Н С Н С Н С

C C C C

C C C C C C H C H

2.38365600	2.49744700	4.81725900
2.75965200	1.94204900	3.55760000
4.02318400	1.45487100	3.30906000
5.05284100	1.46074100	4.29588200
4.42098000	3.45392700	-3.35523200
3.57089500	2.96218300	-2.32112700
2.33929300	3.51472400	-2.05271600
1 82182400	4 61838800	-2 79393800
2 62687600	-1 80633800	-2 09670000
1.74462400	-0.98823200	-2.81557000
1.38271000	-0.06659000	-2.37423500
1.33391400	-1.34736300	-4.10106700
0.64787700	-0.70394800	-4.64504600
1.79485000	-2.52770400	-4.68340500
1.45860900	-2.81545300	-5.67499700
2.68798500	-3.34139600	-3,98256000
3.05798300	-4.25857300	-4.43225600
3.10834400	-2.98122000	-2.70312400
3.81895300	-3.61284600	-2.17913300
4.95366700	-1.77590500	-0.40369200
5.55926600	-2.40888100	0.69226100
4.96481300	-2.69707400	1.55213700
6.92832400	-2.68050500	0.68577600
7.37926100	-3.17264900	1.54321100
7.71198600	-2.32180900	-0.41139300
8.77833700	-2.53168100	-0.41324700
7.11901000	-1.69129900	-1.50655400
7.71920100	-1.40681700	-2.36650800
5.75084100	-1.41893400	-1.50494100
5.30550100	-0.93395800	-2.36642400
2.41585500	-2.59875100	0.75238500
2.40048300	-2.32984800	2.13175100
2.74801900	-1.37091000	2.49979300
1.93421600	-3.28463800	3.03602800
1.92584200	-3.05761100	4.09829900
1.45914200	-4.51382900	2.57692800
1.0/568500	-5.24666400	3.28112100
1.44/13900	-4.77929800	1.20724200
1.055/1100	-5.72281700	0.83709100
1 92001700	-3.03124300	-0.76135000
-2 75765000	-2 80030100	2 92910900
-2 38375700	-3 67156600	3 99600200
-4 02545700	-2 28040400	2 80524600
-5 06489600	-2 55599300	3 74066400
-2 33145300	-2 90546700	-2 84234500
-1.81769900	-3.80163600	-3.82668700
-3.56454300	-2.30951300	-2.96659800
-4.42167800	-2.53670000	-4.08221900
-4.95875600	1.83302800	0.05169700
-5.57006800	2.17635700	1.26699100
-4.97853800	2.25015600	2.17286300
-6.94093300	2.43295700	1.32266200
-7.39642500	2.69845400	2.27281500

С	-7.72062300	2.34745400	0.16883500
Н	-8.78838900	2.54472600	0.21490500
С	-7.12185000	2.00626400	-1.04507600
H	-7.71894400	1.93576200	-1.95015600
С	-5.75193700	1.75011900	-1.10567800
H	-5 30237100	1 49227700	-2 05814400
C	-2 62384900	2 29400000	-1 57006000
C	-3 11243500	3 57790800	-1 87299200
Н	-3 83231700	4 05477900	-1 21490000
C	-2 68669800	4.00477900	-3 02082000
ч	-2.060000000	5 24155000	-3 224002000
II C	-3.00230400	3 63495100	-3.89138500
U U	-1.12004700	1 16027900	-3.09130300
n C	1 21244500	4.1003/000	-4.77001300 2.61250100
	-1.31244300	2.33101400	-3.01230100
П	-0.01340400	1.00730000	-4.29147100
	-1.72797100	1.68339300	-2.45863900
H	-1.35684700	0.68636200	-2.25004800
C	-2.426/8300	2.34996100	1.38588000
	-1.93221000	3.65686500	1.25416300
H	-1.89/25400	4.13580900	0.28268000
С	-1.46214900	4.34966600	2.37141800
H	-1.07236600	5.35643700	2.24892800
С	-1.47633100	3.75102600	3.63156000
H	-1.09707200	4.28619700	4.49743900
С	-1.95070600	2.44568200	3.76891300
Н	-1.94514200	1.96184200	4.74149500
С	-2.41465400	1.74574400	2.65452200
Н	-2.76319800	0.72538100	2.77220500
С	0.55238600	0.22951400	0.18818000
N	2.03730500	2.95834100	5.82955700
Ν	5.90886100	1.44727100	5.08596900
N	5.13061700	3.82965700	-4.19931900
Ν	1.36922600	5.50976000	-3.39217700
Ν	-2.03809300	-4.38488700	4.84961900
N	-5.92992600	-2.75824400	4.49452600
Ν	-1.37326600	-4.52124900	-4.62788500
N	-5.13854900	-2.69638400	-4.98680400
Ν	-0.54278600	-0.18899500	0.12464000
P	3.15214000	-1.34427500	-0.39124900
P	-3.15626200	1.42099200	-0.03750400
S	1.53971300	1.91797100	2.31372800
S	4.42327000	0.80003100	1.74084300
S	4.15875000	1.62325700	-1.36948300
S	1.34326000	2.87542500	-0.77216500
S	-1.32652000	-2.58025300	-1.45555100
S	-4.14463200	-1.23814200	-1.71208700
S	-1.52742900	-2.42109900	1.75670400
S	-4.41534400	-1.23729700	1.45562000
Мо	2.51689900	1.08473500	0.30164400
Мо	-2.50645400	-1.10285500	0.02268700

8. Optimized Coordinates of [Mo(PPh₃)(CN)(mnt)₂]¹⁻

С	-4.68227000	-2.70487500	-0.56135600
С	-3.46476300	-2.05030300	-0.20591100
С	-3.32924700	-1.35271200	0.97304100
С	-4.39248700	-1.22763600	1.91436300
С	3.11385800	-4.39148800	-0.54308000
С	2.28145900	-3.28459800	-0.19809500
С	2.45677900	-2.57897000	0.97129300
С	3.48421900	-2.89377900	1.90839300
С	-0.10148300	-0.34621200	-2.38596100
С	-3.12907200	4.36406600	-1.37204500
Н	-3.93334000	5.03296000	-1.66798600
С	-2.14406700	4.80192600	-0.48496300
Н	-2.17572700	5.81251500	-0.08562400
С	-1.11656000	3.94033400	-0.09889500
Н	-0.36733000	4.28883300	0.60448000
С	-1.05680200	2.62732600	-0.59905700
С	-2.05195400	2.19735900	-1.48964300
Н	-2.02079300	1.19360600	-1.89498200
С	-3.07852800	3.06273200	-1.87221700
Н	-3.84041200	2.71090100	-2.56212600
С	1.86876800	3.29111000	-1.66402600
H	1.05700100	4.00025700	-1.54513000
C	3.00103600	3.66420300	-2.38925200
H	3.05764700	4.66115000	-2.81895900
C	4.04985100	2.76147700	-2.57014100
Н	4.92918300	3.05238200	-3.13923100
C	3.95859800	1.47926200	-2.02743000
H	4.76241400	0.76301500	-2.17352500
C	2.82430500	1.10045300	-1.30876700
н	2 75316000	0 09396300	-0 91099900
C	1 77095500	2 00613200	-1 11140000
C	2 07436100	2 28210400	1 97965500
н	2 87270000	2 14137800	1 25916300
C	2 38953300	2 66845200	3 28356000
ч	3 42948100	2 82109800	3 55922400
C	1 37831300	2 85199900	4 22686400
н	1 62535900	3 14937000	5 24281900
C	0 04740200	2 64554600	3 85978700
н	-0 74886800	2 77994300	4 58692200
C	-0 27149000	2 25798600	2 55830000
u u	-1 31041000	2.23798000	2 201/0100
п С	0 73990900	2.10000100	1 50012000
N	-5 66656100	-3 24357000	-0.87523700
N	-5 26319900	-3.24337000 -1.12128500	2 68177500
IN N	-3.20319900	-1.12120300	2.001//300
IN N	3.70011300	-3.29303300	-0.04/93000
IN III	4.32129100	-3.120/9200	2.00/1/9UU
	-0.04242100	1 40202000	-0.10200000
r c		1.40ZU3ZUU	-U.IUZOUUUU
о С	-2.13639600	-2.1034/900	1 2700000
2	-1.80624600	-0.39429800	1 20206000
2	1 20722220	-2.040520UU	-1.32386200
D Ma	1.39/33300	-1.244398UU	1.30486800
MO	-0.23831500	-1.04026/00	-0.38342900

9. Optimized Coordinates of [Mo(CNSiMe₃)₂(mnt)₂]

С	-2.66441400	-1.68813800	-3.91923300
С	-2.08126600	-0.86545100	-2.90964300
С	-2.07985100	0.51170400	-2.99289400
С	-2.66127700	1.20824400	-4.09417000
С	0.98971500	1.37162100	-0.07720700
С	4.08734300	3.11912000	-1.75705700
Н	4.58466600	2.14344600	-1.72273400
Н	4.86194000	3.88459400	-1.88822900
Н	3.44377300	3.14107000	-2.64341300
С	2.14018800	5.05398800	-0.24943800
Н	1.49247800	5.09831400	-1.13192700
Н	2.82394300	5.91073100	-0.29190700
Н	1.50966800	5.17251800	0.63862900
С	4.12691400	3.25447400	1.37030500
Н	3.50689000	3.35803800	2.26758600
Н	4.90619900	4.02523900	1.41257700
Н	4.62122300	2.27748600	1.40978200
Ν	-3.12352900	-2.38356000	-4.73214400
Ν	-3.11878600	1.80203700	-4.98485700
Ν	1.87454600	2.14496000	-0.12047100
Si	3.10420400	3.44688200	-0.19194200
S	-1.36189400	-1.67235400	-1.54989300
S	-1.35902500	1.47489800	-1.73959000
Мо	-0.58699300	-0.00011300	0.00007700
С	-2.66396300	1.68676600	3.92012000
С	-2.08063100	0.86442400	2.91035100
С	-2.07820900	-0.51272600	2.99372400
С	-2.65867300	-1.20958200	4.09530400
С	0.99051500	-1.37098900	0.07669600
С	4.08613200	-3.12019800	1.75826600
Н	4.58286400	-2.14412400	1.72691500
Н	4.86101500	-3.88544100	1.88911900
Н	3.44104400	-3.14450800	2.64345500
С	2.14249200	-5.05301400	0.24367800
Н	1.49313100	-5.09908300	1.12487000
Н	2.82654200	-5.90952600	0.28603800
Н	1.51370600	-5.17034700	-0.64577000
С	4.13126100	-3.24956000	-1.36928000
H	3.51285400	-3.35145500	-2.26786600
Н	4.91082400	-4.02003100	-1.41173100
Н	4.62538000	-2.27236300	-1.40588600
Ν	-3.12325500	2.38191600	4.73316400
Ν	-3.11538300	-1.80363000	4.98623200
Ν	1.87574500	-2.14389100	0.11963600
Si	3.10588900	-3.44537300	0.19079900
S	-1.36239100	1.67172600	1.55025000
S	-1.35723900	-1.47551100	1.74018400

10. Energy of the complex [Mo(CNSiMe₃)₂(mnt)₂] (5) and [Mo(NCSiMe₃)₂(mnt)₂]

Figure S10. Energy of the complex [Mo(CNSiMe₃)₂(mnt)₂] (5) and [Mo(NCSiMe₃)₂(mnt)₂].