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Table S1. Consecutive protonation constants of H,do2a and their stability constant of their
Ln(IIT) complexes (25 °C).

Constant Ref. [1] ¢ Ref. [2] ¢ Ref. [2]¢ Ref. [3] %> | Ref. 4]4
logKy 11.45 11.38 10.91 10.94 10.91;10.94
logKpor 9.54 9.62 9.45 9.55 9.45;9.54
logKusL 4.00 3.95 4.09 3.85 4.09; 3.85
logKar 2.36 2.62 3.18 2.55 3.18; 2.55
logKys. <23 -—- -—- -—- -—-
logKyer <23 --- -—- -- -—-
Tonic 0.1 ™M 0.1 M (NMey)Cl | 0.1 M KCI 0.1 M 0.1 M KCl
strength (NMe,)ClO, (NMe,)Cl

logKar 16.6 10.94
logKcer --- --- 11.31 11.3
logKguL --- - 12.99 -—-
logKgaL 19.4;19.1 13.06
logKL --- --- 12.93 -
logKypL --- 20.6 13.26 13.4
logKcar 7.8 7.16

 Potentiometry,  Capillary zone electrophoresis, ¢ Spectrophotometry
References:

[1]1J. Weeks, M.R. Taylor, K.P. Wainwright, Dalton Trans 1997, 317 —322.

[2] J. Huskens, D.A. Torres, Z. Kovacs, J.P.Andre, C.F.G.C. Geraldes, A.D. Sherry, Inorg. Chem.
1997, 36, 1495-1503.

[3] C.A. Chang, Y.H. Chen, H.Y. Chen, F.K.Shieh, Dalton Trans. 1998, 3243-3248.

[4] E. Szilagi, E. Toth, Z. Kovacs, J. Platzcek, B. Raduchel, E. Brucher, Inorg. Chim. Acta 2000, 298,
226-234.



Table S2. Overview of molecular structures of ternary [Ln(do2a)(dpa)]- and binary
[Eu(do2a)]" complexes.

[Eu(do2a)(dpa)]  complex [Ref- 1] [Tb(do2a)(dpa)]  complex [Ref- 2]
Eu-N1macro 2.67 A Th-N1macro 2.64 A
Eu-N2macro 259 A Th-N2macro 2.57A
Eu-N3macro 2.67 A Tb-N3macro 2.66 A
Eu-N4macro 2.58A Th-N4macro 2.56 A
Eu-Q1macro 2.38A Tb-Q1macro 2.36 A
Eu-(Q2macro 237 A Tb-Q2macro 2.35A

Eu-01°PA 2404 Th-01PPA 2.394

Eu-02°4 2414 Th-02°PA 2404

Eu-NPPA 2514 Th-NPPA 2494

[Eu(do2a)]* complex[Ref-3! [Tb(do2a)]* complex
Eu-N1macro 2.70 ALC; 2,71 A sC
Eu-N2macro 2.61 ALC; 2,62 ASC
Eu-N3macro 2.72 ALC; 2,73 A sC
Eu-N4macro 2.61 ALC; 262 A SC
Eu-Q1macro 2.35ALC; 234 ASC
Eu-(Q2macro 2.30ALC; 229 A sC



Fu-01water 2704 LC: 2634 5C
Eu-0Q2water 2.63A41LC- 272 45C
FEu-03water 2594 1LC. 259 45C

Quasi-relativistic effective core potentials: Large Core- LC and Small Core-SC, employed for
quantum-chemical calculations (see Ref. 3)

[Ref. 1] J.P. Kirby, M.L. Cable, D.J. Levine, H.B. Gray and A, Ponce, Anal. Chem., 2008, 80, 5750-
5754.

[Ref. 2] M.L. Cable, J.P. Kirby, K. Sorasaenee, H.B. Gray and A, Ponce, J. Am. Chem. Soc., 2007,
129, 1474-1475.

[Ref. 3] C.A.Chang, H.Y. Lee and Ch.-L. Chen, Dalton Trans., 2013, 42, 6397-6409.



The calculation of stability constants from TRFS experimental data

Generally, the number of water molecules coordinated to Eu(Ill) complex was
estimated by simplified equation [ref. 1] as

Gu,0pa =1.05xky o —0.70 (S1)
and/or other form was obtained after rearrangement

G050 +0.70
Kiowe == o5 (52)

The equilibrium constant for the following reaction at given pH
[Eu(H,0),T"" + L «—== 5 [EuL(H,0),]" +6H,0 (Eq_A)

1s defined as

EuL
Keff,EuL = u (S3)
[Eu]x[L]
and the mass-balance equations are valid
¢, =[EuL]+[Eu] (S4A)
¢; =[EuL]+[L] (S4B)

The following equation related to rate constant of luminescence decay of Eu(Ill)
complex in presence of free Eu(Ill) ion was derived elsewhere [ref. 1]

kHZO, EuL-Eu — kHZO, fur X Opu kHZO, pu X (1=0g,1) (S5)

EuL
where the relative concentration of Eu(IIl) complex is d;,; = [EuL]

Eu
Combining Egs (S3) and (S4A and S4B), the following equation is derived
[Eul] _ Ot X Cy O

LT BUIX[L] (1= Oy ) Xy X (€p = O X€5) (1= G )X (€1, =P XCpy)
Substituting Eq. (S5) by Eq. (S2)

(S6)

91,0, 50-r0 T0-70 Gy g +0.70 Iu,0,8. +0.70
== =—2= X0y, +—————x(1-7, S7
1.05 1.05 Bt 1.05 (1= %) 57
and the new Equation is obtained after arrangement:
44,0.EuL-Eu — 91,0,EuL X Opu + 94,0.Eu X (1= 8g,) (S8)

Thus, the relative concentration of Eu(IIl) complex can be calculated as

4w,0,Bu ~ 91,0, EuL-Eu
Opy. = (S9)
494,0,Eu ~ 91,0, EuL

Assuming the chemical reaction (A), the Eq. (S9) can be simplified as
9—
O.. = 7~ 9n,0.muL-Eu. (S10)

EuL 6

and this relationship can be used for calculation of equilibrium constant (see Eq. (S6)).
To get stability constant which is independent on pH:

log By, =log Keff,EuL —log Q) (S11)
where the term is calculated as
Ay =1+ K x[H ]+ K, x K, x[H" ] +... (S12)



Analogously, the equilibrium constant for the following reaction at given pH
[Tb(H,0), "'+ L «—=m 5 [TbL(H,0),]" +6H,0 (Eq_B)

is defined as

[TbL]
K =———— S13
eff, ThL [Tb]x[L] (S13)
as well as
qw,0,moL-T6 — 9H,0,T0L ¥ Orpr + dw,0,m ¥ (1=0m) (S14)

Thus the relative concentration of Tb(III) complex can be calculated as

S = 9w1,0,16 ~ 91,0, ToL-Tb (S15)
94,0, 10 ~ 91,0, ToL
Assuming the chemical reaction (B), the Eq. (14) can be simplified as
]_

5. = q H260, TbL-Tb (S16)
and this relationship can be used for calculation of equilibrium constant (see Eq.
(S13)).
To get stability constant independent on pH:

log B, =logK eff,Eul log &y (S17)

1 P.P.Barthelemy and G.R. Choppin, Inorg. Chem., 1989, 28, 3354-3357.
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Fig. S1: The examples of emission spectra of [Eu(do2a)]* complex measured for various
cL/ cgy ratios and pH = 5.6-6.4 (Aexe = 394 nm, cg, = 1 mM, [=0.1 M (KCI)).

Table S3: The calculated stability constants of [Eu(do2a)]* complex.
The experimental conditions are the same as in Fig. S1.

pH Ratio ¢y, / cgy

log feuL 1 1.75 2.5
5.6 12.65 12.52 13.19
6.0 11.78 12.11 12.31

Average value

12.4; £ 0.4
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Fig. S2: The examples of luminescence-decay traces of the Eu(I1I)-H,do2a system measured
for the ¢/ cgy = 1, pH = 5.6 (black) and ¢ / cg, = 2.5, pH = 6.0 (red). (Aexc = 394 nm,
(hem = 618 nm cg, = 1 mM, I=0.1 M (KC)).

Table S4: The calculated stability constants of [Eu(do2a)]* complex®.
The experimental conditions are the same as in Fig. S2.

pH/q? Ratio ¢, / cgy
(log fFeur?) 1 1.75 2.5
5.6 4.72 (13.24) 4.35 (12.85) 4.11 (12.72)
6.0 4.60 (12.51) 4.31 (12.06) 3.83 (12.07)
Average value 12.5; £ 0.4,

a) calculated as ¢ = 1.02x107 kops — 0.17 [see T. Kimura and Y. Kato, J.
Alloys Comp., 1998, 278, 92-97)
b) assuming the equilibrium [Eu(H,0)9]*" + L <> [EuL(H,0);3]" + 6 H,O
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Fig. S3: The examples of emission spectra of [Tb(do2a)]" complex measured for various
cL/ et ratios and pH = 5.6-6.4 (Aexe =355 nm, e, = 1 mM, I=0.1 M (KCI)).

Table S5: The calculated stability constants of [Tb(do2a)]* complex.
The experimental conditions are the same as in Fig. S3.

pH Ratio ¢y, / cgy

log SeuL 1 1.75 2.5
5.6 12.79 12.88 12.64
6.0 12.45 12.10 12.12

Average value

12.59 £ 0.33
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Fig. S4: The examples of luminescence-decay traces of the Tb(III)-H,do2a system measured
for the ¢ / e, = 1, pH = 5.6 (black) and ¢ / ¢ty = 2.5, pH = 6.0 (red). (Aexe = 355
nm, Aep, = 545 nm, ¢, = 1 mM, I=0.1 M (KCl)).

Table S6: The calculated stability constants of [Tb(DO2A)]* complex®.
The experimental conditions are the same as in Fig. S4.

pH/q? Ratio ¢y, / cgy
(log fru?) 1 1.75 2.5
5.6 3.86 (13.15) 3.24 (12.90) 3.07 (12.74)
6.0 3.57 (12.53) 3.00 (12.23) 2.67 (12.19)
Avg value 12.6, + 0.3

a) calculated as ¢ = 4.00%1073 ko — 0.93 (see T. Kimura and Y. Kato, J. Alloys
Comp., 1998, 278, 92-97).
b) assuming the equilibrium [Tb(H,0)s]** + L <> [TbL(H,0),]" + 6 H,0O
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Fig. S5: The distribution diagram of Eu(III)-H,do2a system (equilibrium speciation diagram).
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Fig. S6: The formation of Eu(Ill) and Tb(IIl) complexes with H,do2a ligand and Gd(III)
complexes with Hido3a and Hydota ligands (the experimental data were taken and
recalculated from [Refs. 1 and 2].

[Ref. 1] X. Wang, T. Jin, V. Comblin, A. Lopez-Mut, E. Merciny and J.F. Desreux, Inorg.
Chem., 1992, 31, 1095-1099.

[Ref. 2] K. Kumar and M.F. Tweddle, /norg. Chem., 1993, 37, 4193-4199.
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The formation of [Eu(do2a)]® complex - reaction mechanism

The formation of Eu(IIl) complex can be described by two-step reaction mechanism
(the charges of species are omitted for the sake of clarity):

Eu+H L «*— [Eu(H L)]*+(x - y)H"

i N (Eq_O)
[Eu(H L)]* —— [EulL]+ yH

Generally, the rate of formation of Eu(IIl) complex can be described as
V= k2,f x [Eu]tot x [L]tot (818)
For reaction mechanism mentioned above, the rate of formation of Eu(IIl) complex is

v =k *x[EulL*] (S19)
knowing the equilibrium constant K*

*
kr= PO (S20)
[Eu]x[H,L]
In metal excess (cg, >> cL), the previous equations can be modified as
* *
v =k *x K X[Eu]tot X[L]tot :kabs =k *x K X[Eu]tot (Szl)
1+ K *X[Eu],, ’ 1+ K *x[Eu],,
and analogously in ligand excess (cg, << cr)
% %
v:k*xKX—[L]“"x[Eu]tm = ko, zk*xKx—[L]tot (S22)
1+ K *x[L],, : 1+ K *x[L],,

It is evident k, s = k* xK* [Refs 1, 2]. Also in case when nominator = 1, then
Koo =k * XK *X[Eu], =k, ¢ x[Eulyy, (cea>>cL) (S23A)
kf,obs =k*xK*x[L],, == k2,f X[L]o (cpu<<cr) (S23B)

1. X.Wang, T.Jin, V. Comblin, A. Lopez-Mut, E. Merciny and J.F. Desreux, Inorg. Chem., 1992, 31, 1095-1099.
2.  M.P.C. Campello, S. Lacerda, I.C. Santos, G.A. Pereiera, G.F.G.C. Geraldes, J. Kotek, P. Hermann, J. Vanék, P.
Lubal, V. Kubicek, E. Téth and |. Santos, Chem. Eur. J., 2010, 16, 8446-8465.
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Fig. S7.: The plot of pseudo-first rate constants of Eu(IIl) complex formation as
function of europium(Ill) concentration. The second-order rate constant 0.463
M-1s.-! was obtained as slope linear dependence.
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Fig. S8: The distribution diagram of Eu(III)-H,do2a system (kinetic speciation diagram).
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Thermodynamics vs. kinetics of [Ln(do2a)]" complexes

The consistency of obtained kinetic parameters can be verified by calculation of
stability constant of Ln(III) complexes. For the following chemical reaction

LnL"+H" < Ln*+ HL (Eq_D)
the kinetic rate law ii defined as
v =k, x[LnL]x[H"] =k, x[Ln]x[HL] (S24)
which can be defined in enlarged form
v=ky x B x[Ln]x[L]1x[H"] =k, x[Ln]x K, x[H"]x[L] (S25)
where equilibrium constants are defined as

ﬂLnL = [LnL] and Ky = [+HL] (S26)
[Ln]x[L] [H" ]x[L]
Then after simplification
ke X P =k x Ky (527)
the final relationship is derived
Pn = Koy (S284)
H
or in logarithmic form as
log . = log(“ 1) +og K.y (S28B)

H
The meaning of rate constants ky; and ky defined for the formation and dissociation reaction
of Ln(IIT) complexes is connected with parameters defined earlier. The overall rate constant
for formation of Ln(IIl) complex

Ln* + HL —% 5 LnL+H" (Eq_E)
The dissociation constant of Ln(III) complex was described by another reaction pathway as
LnL" + H® <S5 T n(HL)™ (Eq_F)
Ln(HL)* —f=en 5 1 n* + HL (Eq_G)

The pseudo-first order rate constant for Ln(IIT) complex dissociation is defined as
k _ kLn(HL) X KH,LnL x[H"] _ ky x [H']
G 14 Ky X[H] 1+ K, x[H]

H,LnL H,LnL

(S29)

where
kH = kLn(HL) x KH,LnL (S30)
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