Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting informations for

The time-resolved fluorescence study of kinetics and thermodynamics of Eu(III) and Tb(III) complexes with the do2a macrocyclic ligand

Filip SMRČKA,^{a)} Přemysl LUBAL,^{a,b)} *

^{a)} Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 BRNO, Czech Republic, e-mail:<u>lubal@chemi.muni.cz</u>

^{b)} Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 BRNO, Czech Republic

<u>Content</u> Page	<u>!</u>
Table S1. Consecutive protonation constants of H2do2a and their stability constant of their	
Ln(III) complexes (25 °C)	
Table S2. Overview of molecular structures of ternary [Ln(do2a)(dpa)] ⁻ and binar	ry
[Ln(do2a)] ⁺ complexes	
Table S3: The calculated stability constants of [Eu(do2a)] ⁺ complex-luminescence	
spectra7	
Table S4: The calculated stability constants of [Eu(do2a)] ⁺ complex-luminescence	
decay	
Table S5: The calculated stability constants of $[Tb(do2a)]^+$ complex- luminescence	
spectra9	
Table S6: The calculated stability constants of [Tb(do2a)] ⁺ complex luminescence	
decay10	
Fig. S1 : The examples of emission spectra of [Eu(do2a)] ⁺ complex	
Fig. S2 : The examples of luminescence-decay traces of the Eu(III)-H ₂ do2a system8	
Fig. S3 : The examples of emission spectra of [Tb(do2a)] ⁺ complex9	
Fig. S4: The examples of luminescence-decay traces of the Tb(III)-H ₂ do2a system10	
Fig. S5: The distribution diagram of Eu(III)-H ₂ do2a system (equilibrium speciation	
diagram)	
Fig. S6: The formation of Eu(III) and Tb(III) complexes with H ₂ do2a ligand and Gd(II	I)
complexes with H_3 do3a and H_4 dota ligands	
Fig. S7.: The plot of pseudo-first rate constants of Eu(III) complex formation as function	of
europium(III) concentration	
Fig. S8: The distribution diagram of $Eu(III)$ -H ₂ do2a system (kinetic speciation diagram)1	.4
The calculation of stability constants from TRFS experimental data5-6	
The formation of [Eu(do2a)] ⁺ complex – reaction mechanism	
Thermodynamics vs. kinetics of [Ln(do2a)] ⁺ complexes	

Constant	Ref. [1] <i>a</i>	Ref. [2] <i>a</i>	Ref. [2] <i>a</i>	Ref. [3] <i>a,b</i>	Ref. 4] ^{<i>d</i>}
log <i>K</i> _{HL}	11.45	11.38	10.91	10.94	10.91;10.94
$\log K_{\rm H2L}$	9.54	9.62	9.45	9.55	9.45; 9.54
$\log K_{\rm H3L}$	4.00	3.95	4.09	3.85	4.09; 3.85
$\log K_{\rm H4L}$	2.36	2.62	3.18	2.55	3.18; 2.55
$\log K_{\rm H5L}$	<2.3				
$\log K_{\rm H6L}$	<2.3				
Ionic strength	0.1 м (NMe4)ClO4	0.1 м (NMe ₄)Cl	0.1 м KCl	0.1 м (NMe ₄)Cl	0.1 м KCl
$\log K_{\rm LaL}$		16.6		10.94	
$\log K_{\rm CeL}$				11.31	11.3
$\log K_{\rm EuL}$				12.99	
$\log K_{GdL}$		19.4; 19.1		13.06	
$\log K_{\mathrm{TbL}}$				12.93	
$\log K_{ m YbL}$		20.6		13.26	13.4
log <i>K</i> _{CaL}		7.8		7.16	

Table S1. Consecutive protonation constants of H₂do2a and their stability constant of their Ln(III) complexes (25 °C).

^{*a*} Potentiometry, ^{*b*} Capillary zone electrophoresis, ^{*c*} Spectrophotometry

References:

[1] J. Weeks, M.R. Taylor, K.P. Wainwright, Dalton Trans 1997, 317 - 322.

[2] J. Huskens, D.A. Torres, Z. Kovacs, J.P.Andre, C.F.G.C. Geraldes, A.D. Sherry, *Inorg. Chem.* **1997**, 36, 1495-1503.

[3] C.A. Chang, Y.H. Chen, H.Y. Chen, F.K.Shieh, Dalton Trans. 1998, 3243-3248.

[4] E. Szilagi, E. Toth, Z. Kovacs, J. Platzcek, B. Raduchel, E. Brucher, *Inorg. Chim. Acta* 2000, 298, 226-234.

Table S2. Overview of molecular structures of ternary [Ln(do2a)(dpa)]- and binary[Eu(do2a)]+ complexes.

[Eu(do2a)(dpa)]⁻ complex [Ref. 1]

Eu-N1 ^{macro}	2.67 Å
Eu-N2 ^{macro}	2.59 Å
Eu-N3 ^{macro}	2.67 Å
Eu-N4 ^{macro}	2.58 Å
Eu-01 ^{macro}	2.38 Å
Eu-02 ^{macro}	2.37 Å
Eu-O1 ^{DPA}	2.40 Å
Eu-O2 ^{DPA}	2.41 Å
Eu-N ^{DPA}	2.51 Å

[Tb(do2a)(dpa)]⁻ complex [Ref. 2]

Tb-N1 ^{macro}	2.64 Å
Tb-N2 ^{macro}	2.57Å
Tb-N3 ^{macro}	2.66 Å
Tb-N4 ^{macro}	2.56 Å
Tb-01 ^{macro}	2.36 Å
Tb-02 ^{macro}	2.35 Å
Tb-01 ^{DPA}	2.39 Å
Tb-O2 ^{DPA}	2.40 Å
Tb-N ^{DPA}	2.49 Å

[Eu(do2a)]⁺ complex^[Ref. 3]

Eu-N1 ^{macro}	2.70 Å LC ; 2.71 Å SC
Eu-N2 ^{macro}	2.61 Å ^{LC} ; 2.62 Å ^{SC}
Eu-N3 ^{macro}	2.72 Å ^{LC} ; 2.73 Å ^{SC}
Eu-N4 ^{macro}	2.61 Å ^{LC} ; 2.62 Å ^{SC}
Eu-01 ^{macro}	2.35 Å ^{LC} ; 2.34 Å ^{SC}
Eu-02 ^{macro}	2.30 Å $^{\rm LC}$; 2.29 Å $^{\rm SC}$

[Tb(do2a)]⁺ complex

Eu-01 ^{water}	2.70 Å ^{LC} ; 2.63 Å ^{SC}
<i>Eu-02^{water}</i>	2.63 Å ^{LC} ; 2.72 Å ^{SC}
Eu-03 ^{water}	2.59Å ^{LC} ; 2.59Å ^{SC}

Quasi-relativistic effective core potentials: Large Core- LC and Small Core-SC, employed for quantum-chemical calculations (see Ref. 3)

- [Ref. 1] J.P. Kirby, M.L. Cable, D.J. Levine, H.B. Gray and A, Ponce, *Anal. Chem.*, 2008, 80, 5750-5754.
- [Ref. 2] M.L. Cable, J.P. Kirby, K. Sorasaenee, H.B. Gray and A, Ponce, J. Am. Chem. Soc., 2007, 129, 1474-1475.
- [Ref. 3] C.A.Chang, H.Y. Lee and Ch.-L. Chen, *Dalton Trans.*, 2013, 42, 6397-6409.

The calculation of stability constants from TRFS experimental data

Generally, the number of water molecules coordinated to Eu(III) complex was estimated by simplified equation [ref. 1] as

$$q_{\rm H_2O-EuL} = 1.05 \times k_{\rm H_2O} - 0.70$$
 (S1)

and/or other form was obtained after rearrangement

$$k_{\rm H_2O-EuL} = \frac{q_{\rm H_2O-EuL} + 0.70}{1.05}$$
(S2)

The equilibrium constant for the following reaction at given pH

$$[\operatorname{Eu}(\operatorname{H}_2\operatorname{O})_9]^{3+} + L \xleftarrow{K_{\operatorname{eff},\operatorname{Eul}}} [\operatorname{Eu}L(\operatorname{H}_2\operatorname{O})_3]^+ + 6 \operatorname{H}_2\operatorname{O}$$
(Eq_A)

is defined as

$$K_{\rm eff,EuL} = \frac{[EuL]}{[Eu] \times [L]}$$
(S3)

and the mass-balance equations are valid

$$c_{\rm Eu} = [{\rm EuL}] + [{\rm Eu}] \qquad (S4A)$$
$$c_{\rm L} = [{\rm EuL}] + [{\rm L}] \qquad (S4B)$$

The following equation related to rate constant of luminescence decay of Eu(III) complex in presence of free Eu(III) ion was derived elsewhere [ref. 1]

$$k_{\rm H_{2}O, EuL-Eu} = k_{\rm H_{2}O, EuL} \times \delta_{\rm EuL} + k_{\rm H_{2}O, Eu} \times (1 - \delta_{\rm EuL})$$
(S5)

where the relative concentration of Eu(III) complex is $\delta_{EuL} = \frac{[EuL]}{c_{Eu}}$

Combining Eqs (S3) and (S4A and S4B), the following equation is derived $K_{\text{eff,EuL}} = \frac{[\text{EuL}]}{[\text{Eu}] \times [\text{L}]} = \frac{\delta_{\text{EuL}} \times c_{\text{Eu}}}{(1 - \delta_{\text{EuL}}) \times c_{\text{Eu}} \times (c_{\text{L}} - \delta_{\text{EuL}} \times c_{\text{Eu}})} = \frac{\delta_{\text{EuL}}}{(1 - \delta_{\text{EuL}}) \times (c_{\text{L}} - \delta_{\text{EuL}} \times c_{\text{Eu}})}$ (S6) Substituting Eq. (S5) by Eq. (S2) $a_{\text{H}} = a_{\text{H}} + 0.70 \qquad a_{\text{H}} = a_{\text{H}} + 0.70$

$$\frac{q_{\rm H_2O, EuL-Eu} + 0.70}{1.05} = \frac{q_{\rm H_2O, EuL} + 0.70}{1.05} \times \delta_{\rm EuL} + \frac{q_{\rm H_2O, Eu} + 0.70}{1.05} \times (1 - \delta_{\rm EuL})$$
(S7)

and the new Equation is obtained after arrangement:

$$q_{\rm H_2O,EuL-Eu} = q_{\rm H_2O,EuL} \times \delta_{\rm EuL} + q_{\rm H_2O,Eu} \times (1 - \delta_{\rm EuL})$$
(S8)

Thus, the relative concentration of Eu(III) complex can be calculated as

$$\delta_{\text{EuL}} = \frac{q_{\text{H}_2\text{O},\text{Eu}} - q_{\text{H}_2\text{O},\text{EuL}-\text{Eu}}}{q_{\text{H}_2\text{O},\text{Eu}} - q_{\text{H}_2\text{O},\text{EuL}}}$$
(S9)

Assuming the chemical reaction (A), the Eq. (S9) can be simplified as

$$\delta_{\text{EuL}} = \frac{9 - q_{\text{H}_2\text{O},\text{EuL-Eu}}}{6} \tag{S10}$$

and this relationship can be used for calculation of equilibrium constant (see Eq. (S6)). To get stability constant which is independent on pH:

$$\log \beta_{\rm EuL} = \log K_{\rm eff, EuL} - \log \alpha_{\rm L(H)}$$
(S11)

where the term is calculated as

$$\alpha_{\rm L(H)} = 1 + K_{\rm p1} \times [\rm H^+] + K_{\rm p1} \times K_{\rm p2} \times [\rm H^+]^2 + \dots$$
(S12)

Analogously, the equilibrium constant for the following reaction at given pH

 $[Tb(H_2O)_8]^{3+} + L \xleftarrow{K_{eff,TbL}} [TbL(H_2O)_2]^+ + 6H_2O \qquad (Eq_B)$ is defined as

$$K_{\rm eff, TbL} = \frac{[\rm TbL]}{[\rm Tb] \times [L]}$$
(S13)

as well as

$$q_{\mathrm{H}_{2}\mathrm{O},\mathrm{TbL}-\mathrm{Tb}} = q_{\mathrm{H}_{2}\mathrm{O},\mathrm{TbL}} \times \delta_{\mathrm{TbL}} + q_{\mathrm{H}_{2}\mathrm{O},\mathrm{Tb}} \times (1 - \delta_{\mathrm{TbL}})$$
(S14)

Thus the relative concentration of Tb(III) complex can be calculated as

$$\delta_{\text{TbL}} = \frac{q_{\text{H}_2\text{O},\text{Tb}} - q_{\text{H}_2\text{O},\text{TbL}-\text{Tb}}}{q_{\text{H}_2\text{O},\text{Tb}} - q_{\text{H}_2\text{O},\text{TbL}}}$$
(S15)

Assuming the chemical reaction (B), the Eq. (14) can be simplified as

$$\delta_{\text{TbL}} = \frac{8 - q_{\text{H}_2\text{O},\text{TbL-Tb}}}{6} \tag{S16}$$

and this relationship can be used for calculation of equilibrium constant (see Eq. (S13)).

To get stability constant independent on pH:

$$\log \beta_{\rm EuL} = \log K_{\rm eff, EuL} - \log \alpha_{\rm L(H)}$$
(S17)

1 P.P. Barthelemy and G.R. Choppin, Inorg. Chem., 1989, 28, 3354-3357.

Fig. S1: The examples of emission spectra of $[Eu(do2a)]^+$ complex measured for various $c_{\rm L} / c_{\rm Eu}$ ratios and pH = 5.6-6.4 ($\lambda_{\rm exc}$ = 394 nm, $c_{\rm Eu}$ = 1 mM, I = 0.1 M (KCl)).

Table S3:	The cal	culated	stability	v constants	of [Eu(d	$lo2a)]^+$ complex.	
			-		-		

рН		Ratio $c_{\rm L}$ / $c_{\rm Eu}$	
$\log \beta_{EuL}$	1	1.75	2.5
5.6	12.65	12.52	13.19
6.0	11.78	12.11	12.31
Average value		$12.4_3 \pm 0.4_9$	

The experimental conditions are the same as in Fig. S1.

Fig. S2: The examples of luminescence-decay traces of the Eu(III)-H₂do2a system measured for the $c_{\rm L} / c_{\rm Eu} = 1$, pH = 5.6 (black) and $c_{\rm L} / c_{\rm Eu} = 2.5$, pH = 6.0 (red). ($\lambda_{\rm exc} = 394$ nm, $(\lambda_{em} = 618 \text{ nm } c_{Eu} = 1 \text{ mM}, I = 0.1 \text{ M} (\text{KCl})).$

Table S4: The	calculated stabilit	y constants of	$[Eu(do2a)]^+$	complex ^a .

pH / q ª	Ratio $c_{\rm L}$ / $c_{\rm Eu}$			
$(\log \beta_{\rm EuL}^{\rm b})$	1	1.75	2.5	
5.6	4.72 (13.24)	4.35 (12.85)	4.11 (12.72)	
6.0	4.60 (12.51)	4.31 (12.06)	3.83 (12.07)	
Average value		$12.5_7\pm0.4_6$		

The experimental conditions are the same as in Fig. S2

a) calculated as $q = 1.02 \times 10^{-3} k_{obs} - 0.17$ [see T. Kimura and Y. Kato, J. Alloys Comp., 1998, 278, 92-97)

b) assuming the equilibrium $[Eu(H_2O)_9]^{3+} + L \leftrightarrow [EuL(H_2O)_3]^+ + 6 H_2O$

Fig. S3: The examples of emission spectra of $[Tb(do2a)]^+$ complex measured for various c_L / c_{Tb} ratios and pH = 5.6-6.4 (λ_{exc} = 355 nm, c_{Tb} = 1 mM, I = 0.1 M (KCl)).

pН		Ratio <i>c</i> _L / <i>c</i> _{Eu}	
$\log \beta_{\rm EuL}$	1	1.75	2.5
5.6	12.79	12.88	12.64
6.0	12.45	12.10	12.12
Average value		$12.5_0 \pm 0.3_3$	

Table S5: The calculated stability constants of $[Tb(do2a)]^+$ complex.

Fig. S4: The examples of luminescence-decay traces of the Tb(III)-H₂do2a system measured for the $c_{\rm L} / c_{\rm Tb} = 1$, pH = 5.6 (black) and $c_{\rm L} / c_{\rm Tb} = 2.5$, pH = 6.0 (red). ($\lambda_{\rm exc} = 355$ nm, $\lambda_{\rm em} = 545$ nm, $c_{\rm Tb} = 1$ mM, I = 0.1 M (KCl)).

Table S6: The calculated stability constants of [Tb(DO2A)] ⁺ complex ^a	a.
The experimental conditions are the same as in Fig. S4.	

pH / q ^a	Ratio $c_{\rm L}$ / $c_{\rm Eu}$		
$(\log \beta_{\rm EuL}^{\rm b})$	1	1.75	2.5
5.6	3.86 (13.15)	3.24 (12.90)	3.07 (12.74)
6.0	3.57 (12.53)	3.00 (12.23)	2.67 (12.19)
Avg value	$12.6_2 \pm 0.3_8$		

a) calculated as $q = 4.00 \times 10^{-3} k_{obs} - 0.93$ (see T. Kimura and Y. Kato, *J. Alloys Comp.*, **1998**, 278, 92-97).

b) assuming the equilibrium $[Tb(H_2O)_8]^{3+} + L \leftrightarrow [TbL(H_2O)_2]^+ + 6 H_2O$

Fig. S5: The distribution diagram of Eu(III)-H₂do2a system (equilibrium speciation diagram).

- Fig. S6: The formation of Eu(III) and Tb(III) complexes with H_2 do2a ligand and Gd(III) complexes with H_3 do3a and H_4 dota ligands (the experimental data were taken and recalculated from [Refs. 1 and 2].
- [Ref. 1] X. Wang, T. Jin, V. Comblin, A. Lopez-Mut, E. Merciny and J.F. Desreux, *Inorg. Chem.*, **1992**, 31, 1095-1099.
- [Ref. 2] K. Kumar and M.F. Tweddle, Inorg. Chem., 1993, 37, 4193-4199.

The formation of [Eu(do2a)]⁺ complex - reaction mechanism

The formation of Eu(III) complex can be described by two-step reaction mechanism (the charges of species are omitted for the sake of clarity):

$$Eu + H_x L \xleftarrow{k^*} [Eu(H_y L)]^* + (x - y)H^+$$

$$[Eu(H_y L)]^* \xrightarrow{k^*} [EuL] + yH^+$$
(Eq_C)

Generally, the rate of formation of Eu(III) complex can be described as $v = k_{2,f} \times [Eu]_{tot} \times [L]_{tot}$ (S18)

For reaction mechanism mentioned above, the rate of formation of Eu(III) complex is $v = k * \times [EuL^*]$ (S19)

$$V - K \cdot \times [LuL \cdot]$$

knowing the equilibrium constant K*

$$K^* = \frac{[\text{EuL}^*]}{[\text{Eu}] \times [\text{H}_x \text{L}]}$$
(S20)

In metal excess ($c_{Eu} >> c_L$), the previous equations can be modified as

$$v = k * \times \frac{K * \times [\text{Eu}]_{\text{tot}}}{1 + K * \times [\text{Eu}]_{\text{tot}}} \times [\text{L}]_{\text{tot}} \Longrightarrow k_{\text{f,obs}} = k * \times \frac{K * \times [\text{Eu}]_{\text{tot}}}{1 + K * \times [\text{Eu}]_{\text{tot}}}$$
(S21)

and analogously in ligand excess ($c_{Eu} \ll c_L$)

$$v = k * \times \frac{K * \times [L]_{\text{tot}}}{1 + K * \times [L]_{\text{tot}}} \times [Eu]_{\text{tot}} \Longrightarrow k_{\text{f,obs}} = k * \times \frac{K * \times [L]_{\text{tot}}}{1 + K * \times [L]_{\text{tot}}}$$
(S22)

It is evident $k_{2,f} = k^* \times K^*$ [Refs 1, 2]. Also in case when nominator ≈ 1 , then $k_{f,obs} = k^* \times K^* \times [Eu]_{tot} = k_{2,f} \times [Eu]_{tot}$ ($c_{Eu} \gg c_L$) (S23A) $k_{f,obs} = k^* \times K^* \times [L]_{tot} == k_{2,f} \times [L]_{tot}$ ($c_{Eu} \ll c_L$) (S23B)

X. Wang, T. Jin, V. Comblin, A. Lopez-Mut, E. Merciny and J.F. Desreux, *Inorg. Chem.*, 1992, **31**, 1095-1099.
 M.P.C. Campello, S. Lacerda, I.C. Santos, G.A. Pereiera, G.F.G.C. Geraldes, J. Kotek, P. Hermann, J. Vaněk, P. Lubal, V. Kubíček, E. Tóth and I. Santos, *Chem. Eur. J.*, 2010, **16**, 8446-8465.

Fig. S7.: The plot of pseudo-first rate constants of Eu(III) complex formation as function of europium(III) concentration. The second-order rate constant 0.463 M⁻¹s.⁻¹ was obtained as slope linear dependence.

Fig. S8: The distribution diagram of Eu(III)-H₂do2a system (kinetic speciation diagram).

<u>Thermodynamics vs. kinetics of [Ln(do2a)]⁺ complexes</u>

The consistency of obtained kinetic parameters can be verified by calculation of stability constant of Ln(III) complexes. For the following chemical reaction

$$LnL^+ + H^+ \iff Ln^{3+} + HL^-$$
 (Eq_D)

the kinetic rate law ii defined as

$$v = k_{\rm H} \times [{\rm LnL}] \times [{\rm H}^+] = k_{\rm HL} \times [{\rm Ln}] \times [{\rm HL}]$$
(S24)

which can be defined in enlarged form

$$v = k_{\rm H} \times \beta_{\rm LnL} \times [{\rm Ln}] \times [{\rm L}] \times [{\rm H}^+] = k_{\rm HL} \times [{\rm Ln}] \times K_{\rm HL} \times [{\rm H}^+] \times [{\rm L}]$$
(S25)

where equilibrium constants are defined as

$$\beta_{\text{LnL}} = \frac{[\text{LnL}]}{[\text{Ln}] \times [\text{L}]} \text{ and } K_{\text{HL}} = \frac{[\text{HL}]}{[\text{H}^+] \times [\text{L}]}$$
(S26)

Then after simplification

$$k_{\rm H} \times \beta_{\rm LnL} = k_{\rm HL} \times K_{\rm HL} \tag{S27}$$

the final relationship is derived

$$\beta_{\rm LnL} = \frac{k_{\rm HL}}{k_{\rm H}} \times K_{\rm HL}$$
(S28A)

or in logarithmic form as

$$\log \beta_{\text{LnL}} = \log(\frac{k_{\text{HL}}}{k_{\text{H}}}) + \log K_{\text{HL}}$$
(S28B)

The meaning of rate constants k_{HL} and k_{H} defined for the formation and dissociation reaction of Ln(III) complexes is connected with parameters defined earlier. The overall rate constant for formation of Ln(III) complex

$$Ln^{3+} + HL^{-} \xrightarrow{k_{HL}} LnL + H^{+}$$
 (Eq_E)

The dissociation constant of Ln(III) complex was described by another reaction pathway as

$$\operatorname{LnL}^{+} + \operatorname{H}^{+} \xleftarrow{K_{\operatorname{H,LnL}}} \operatorname{Ln}(\operatorname{HL})^{2+}$$
 (Eq_F)

$$Ln(HL)^{2+} \xrightarrow{k_{Ln(HL)}} Ln^{3+} + HL^{-}$$
 (Eq_G)

The pseudo-first order rate constant for Ln(III) complex dissociation is defined as

$$k_{\rm d,obs} = \frac{k_{\rm Ln(\rm HL}) \times K_{\rm H,LnL} \times [\rm H^+]}{1 + K_{\rm H,LnL} \times [\rm H^+]} = \frac{k_{\rm H} \times [\rm H^+]}{1 + K_{\rm H,LnL} \times [\rm H^+]}$$
(S29)

where

$$k_{\rm H} = k_{\rm Ln(HL)} \times K_{\rm H,LnL} \tag{S30}$$