Supporting informations for

The time-resolved fluorescence study of kinetics and thermodynamics of Eu(III) and Tb (III) complexes with the do2a macrocyclic ligand

Filip SMRČKA, ${ }^{\text {a) }}$ Přemysl LUBAL, ${ }^{\text {a,b }) ~ * ~}$

${ }^{\text {a) }}$ Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 BRNO, Czech Republic, e-mail:lubal@chemi.muni.cz
${ }^{\text {b) }}$ Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 62500 BRNO, Czech Republic

Content

Page
Table S1. Consecutive protonation constants of $\mathrm{H}_{2} \mathrm{do} 2 \mathrm{a}$ and their stability constant of their $\mathrm{Ln}(\mathrm{III})$ complexes $\left(25^{\circ} \mathrm{C}\right)$ 2
Table S2. Overview of molecular structures of ternary $[\operatorname{Ln}(d o 2 a)(d p a)]^{-}$and binary $[\operatorname{Ln}(\mathrm{do} 2 \mathrm{a})]^{+}$complexes 3-4
Table S3: The calculated stability constants of $[\mathrm{Eu}(\mathrm{do} 2 \mathrm{a})]^{+}$complex-luminescence spectra 7
Table S4: The calculated stability constants of $[\mathrm{Eu}(\mathrm{do} 2 \mathrm{a})]^{+}$complex-luminescence decay. 8
Table S5: The calculated stability constants of $[\mathrm{Tb}(\mathrm{do} 2 \mathrm{a})]^{+}$complex- luminescence spectra 9
Table S6: The calculated stability constants of $[\mathrm{Tb}(\mathrm{do} 2 \mathrm{a})]^{+}$complex luminescence decay 10
Fig. S1: The examples of emission spectra of $[\operatorname{Eu}(\mathrm{do} 2 \mathrm{a})]^{+}$complex 7
Fig. S2: The examples of luminescence-decay traces of the $\mathrm{Eu}(\mathrm{III})-\mathrm{H}_{2}$ do2a system 8
Fig. S3: The examples of emission spectra of $[\mathrm{Tb}(\mathrm{do} 2 \mathrm{a})]^{+}$complex 9
Fig. S4: The examples of luminescence-decay traces of the $\mathrm{Tb}(\mathrm{III})-\mathrm{H}_{2}$ do2a system 10
Fig. S5: The distribution diagram of $\mathrm{Eu}(\mathrm{III})-\mathrm{H}_{2} \mathrm{do} 2 \mathrm{a}$ system (equilibrium speciation diagram) 11
Fig. S6: The formation of $\mathrm{Eu}(\mathrm{III})$ and Tb (III) complexes with $\mathrm{H}_{2} \mathrm{do} 2$ a ligand and $\mathrm{Gd}(\mathrm{III})$ complexes with $\mathrm{H}_{3} \mathrm{do} 3 \mathrm{a}$ and H_{4} dota ligands 12
Fig. S7.: The plot of pseudo-first rate constants of $\mathrm{Eu}(\mathrm{III})$ complex formation as function of europium(III) concentration 13
Fig. S8: The distribution diagram of $\mathrm{Eu}(\mathrm{III})-\mathrm{H}_{2} \mathrm{do} 2 \mathrm{a}$ system (kinetic speciation diagram) 14
The calculation of stability constants from TRFS experimental data 5-6
The formation of $[\mathrm{Eu}(\mathrm{do} 2 a)]^{+}$complex - reaction mechanism 13
Thermodynamics vs. kinetics of $[\operatorname{Ln}(\mathrm{do} 2 \mathrm{a})]^{+}$complexes 15

Table S1. Consecutive protonation constants of $\mathrm{H}_{2} \mathrm{do} 2 \mathrm{a}$ and their stability constant of their Ln (III) complexes ($25^{\circ} \mathrm{C}$).

Constant	Ref. [1] ${ }^{a}$	Ref. [2] ${ }^{a}$	Ref. [2] ${ }^{a}$	Ref. [3] ${ }^{\text {a,b }}$	Ref. 4] ${ }^{\text {d }}$
$\log K_{\mathrm{HL}}$	11.45	11.38	10.91	10.94	10.91;10.94
$\log K_{\text {H2L }}$	9.54	9.62	9.45	9.55	9.45; 9.54
$\log K_{\text {H3L }}$	4.00	3.95	4.09	3.85	4.09; 3.85
$\log K_{\text {H4L }}$	2.36	2.62	3.18	2.55	3.18; 2.55
$\log K_{\text {HSL }}$	<2.3	---	---	---	---
$\log K_{\text {H6L }}$	<2.3	---	---	---	---
Ionic strength	$\begin{aligned} & 0.1 \mathrm{M} \\ & \left(\mathrm{NMe}_{4}\right) \mathrm{ClO}_{4} \end{aligned}$	$0.1 \mathrm{~m}\left(\mathrm{NMe}_{4}\right) \mathrm{Cl}$	0.1 M KCl	$\begin{aligned} & 0.1 \mathrm{M} \\ & \left(\mathrm{NMe}_{4}\right) \mathrm{Cl} \end{aligned}$	0.1 M KCl
$\log K_{\text {LaL }}$	---	16.		10.94	---
$\log K_{\text {CeL }}$	---	---		11.31	11.3
$\log K_{\text {EuL }}$	---	---		12.99	---
$\log K_{\text {GdL }}$	---	19.4;	9.1	13.06	---
$\log K_{\text {TbL }}$	---	---		12.93	---
$\log K_{\text {YbL }}$	---	20.6		13.26	13.4
$\log K_{\text {CaL }}$	---	7.8		7.16	---

${ }^{a}$ Potentiometry, ${ }^{b}$ Capillary zone electrophoresis, ${ }^{c}$ Spectrophotometry

References:

[1] J. Weeks, M.R. Taylor, K.P. Wainwright, Dalton Trans 1997, 317 - 322.
[2] J. Huskens, D.A. Torres, Z. Kovacs, J.P.Andre, C.F.G.C. Geraldes, A.D. Sherry, Inorg. Chem. 1997, 36, 1495-1503.
[3] C.A. Chang, Y.H. Chen, H.Y. Chen, F.K.Shieh, Dalton Trans. 1998, 3243-3248.
[4] E. Szilagi, E. Toth, Z. Kovacs, J. Platzcek, B. Raduchel, E. Brucher, Inorg. Chim. Acta 2000, 298, 226-234.

Table S2. Overview of molecular structures of ternary $[\operatorname{Ln}(d o 2 a)(d p a)]^{-}$and binary $[\mathrm{Eu}(\mathrm{do} 2 \mathrm{a})]^{+}$complexes.

[Eu(do2a)(dpa)] complex ${ }^{[\text {Ref. 1] }}$
Eu-N1 ${ }^{\text {macro }}$
Eu-N2 ${ }^{\text {macro }}$
Eu-N3 ${ }^{\text {macro }}$
Eu-N4 ${ }^{\text {macro }}$
Eu-01 macro
Eu-O2 ${ }^{\text {macro }}$
Eu-O1 ${ }^{\text {DPA }}$
Eu-O2 ${ }^{\text {DPA }}$
Eu-N ${ }^{D P A}$
$2.67 \AA$
$2.59 \AA$
$2.67 \AA$
$2.58 \AA$
$2.38 \AA$
$2.37 \AA$
$2.40 \AA$
$2.41 \AA$
$2.51 \AA$

$[\mathrm{Eu}(\mathrm{do} 2 \mathrm{a})]^{+}$complex ${ }^{[\text {Ref. 3] }}$
Eu-N1 ${ }^{\text {macro }}$
$2.70 \AA \AA^{\mathrm{LC}} ; 2.71 \AA^{\mathrm{SC}}$
Eu-N2 macro
Eu-N3 ${ }^{\text {macro }}$
Eu-N4 ${ }^{\text {macro }}$
Eu-01 macro
Eu-O2 ${ }^{\text {macro }}$
$2.61 \AA \AA^{\text {LC }} ; 2.62 \AA \AA^{\text {SC }}$
$2.72 \AA{ }^{\mathrm{LC}} ; 2.73 \AA^{\mathrm{SC}}$
$2.61 \AA{ }^{\text {LC }} ; 2.62 \AA \AA^{\text {SC }}$
$2.35 \AA^{\mathrm{LC}} ; 2.34 \AA^{\mathrm{SC}}$
$2.30 \AA{ }^{\mathrm{LC}} ; 2.29 \AA^{\mathrm{SC}}$

$[\mathrm{Tb}(\mathrm{do} 2 \mathrm{a})(\mathrm{dpa})]^{-}$complex ${ }^{[\text {Ref. } 2]}$

Tb-N1 $1^{\text {macro }}$	$2.64 \AA$
Tb-N2 $2^{\text {macro }}$	$2.57 \AA$
Tb-N3 $3^{\text {macro }}$	$2.66 \AA$
Tb-N4 $4^{\text {macro }}$	$2.56 \AA$
Tb-O1 ${ }^{\text {macro }}$	$2.36 \AA$
Tb-O2	$2.35 \AA$
$T b-O 1^{\text {macro }}$	$2.39 \AA$
$T b-O 2^{D P A}$	$2.40 \AA$
$T b-N^{D P A}$	$2.49 \AA$

$[\mathrm{Tb}(\mathrm{do} 2 \mathrm{a})]^{+}$complex

Eu-O1water	$2.70 \AA^{\text {LC }} ; 2.63 \AA \AA^{\text {SC }}$
Eu-O2water	$2.63 \AA^{\text {LC }} ; 2.72 \AA^{\text {SC }}$
Eu-O3water	$2.59 \AA^{\text {LC }} ; 2.59 \AA^{\text {SC }}$

Quasi-relativistic effective core potentials: Large Core- LC and Small Core-SC, employed for quantum-chemical calculations (see Ref. 3)
[Ref. 1] J.P. Kirby, M.L. Cable, D.J. Levine, H.B. Gray and A, Ponce, Anal. Chem., 2008, 80, 57505754.
[Ref. 2] M.L. Cable, J.P. Kirby, K. Sorasaenee, H.B. Gray and A, Ponce, J. Am. Chem. Soc., 2007, 129, 1474-1475.
[Ref. 3] C.A.Chang, H.Y. Lee and Ch.-L. Chen, Dalton Trans., 2013, 42, 6397-6409.

Generally, the number of water molecules coordinated to $\mathrm{Eu}(\mathrm{III})$ complex was estimated by simplified equation [ref. 1] as

$$
\begin{equation*}
q_{\mathrm{H}_{2} \mathrm{O}-\mathrm{EuL}}=1.05 \times k_{\mathrm{H}_{2} \mathrm{O}}-0.70 \tag{S1}
\end{equation*}
$$

and/or other form was obtained after rearrangement

$$
\begin{equation*}
k_{\mathrm{H}_{2} \mathrm{O}-\mathrm{EuL}}=\frac{q_{\mathrm{H}_{2} \mathrm{O}-\mathrm{EuL}}+0.70}{1.05} \tag{S2}
\end{equation*}
$$

The equilibrium constant for the following reaction at given pH

$$
\begin{equation*}
\left[\mathrm{Eu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}\right]^{3+}+\mathrm{L} \stackrel{K_{\text {eff.fut }}}{\longleftrightarrow}\left[\operatorname{EuL}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{+}+6 \mathrm{H}_{2} \mathrm{O} \tag{Eq_A}
\end{equation*}
$$

is defined as

$$
\begin{equation*}
K_{\text {eff }, \text { EuL }}=\frac{[\mathrm{EuL}]}{[\mathrm{Eu}] \times[\mathrm{L}]} \tag{S3}
\end{equation*}
$$

and the mass-balance equations are valid

$$
\begin{align*}
& c_{\mathrm{Eu}}=[\mathrm{EuL}]+[\mathrm{Eu}] \tag{S4A}\\
& c_{\mathrm{L}}=[\mathrm{EuL}]+[\mathrm{L}] \tag{S4B}
\end{align*}
$$

The following equation related to rate constant of luminescence decay of $\mathrm{Eu}(\mathrm{III})$ complex in presence of free $\mathrm{Eu}(\mathrm{III})$ ion was derived elsewhere [ref. 1]

$$
\begin{equation*}
k_{\mathrm{H}_{2} \mathrm{O}, \mathrm{EuL}-\mathrm{Eu}}=k_{\mathrm{H}_{2} \mathrm{O}, \mathrm{EuL}} \times \delta_{\mathrm{EuL}}+k_{\mathrm{H}_{2} \mathrm{O}, \mathrm{Eu}} \times\left(1-\delta_{\mathrm{EuL}}\right) \tag{S5}
\end{equation*}
$$

where the relative concentration of $\mathrm{Eu}(\mathrm{III})$ complex is $\delta_{\mathrm{EuL}}=\frac{[\mathrm{EuL}]}{\mathrm{c}_{\mathrm{Eu}}}$
Combining Eqs (S3) and (S4A and S4B), the following equation is derived

$$
\begin{equation*}
K_{\mathrm{eff}, \mathrm{EuL}}=\frac{[\mathrm{EuL}]}{[\mathrm{Eu}] \times[\mathrm{L}]}=\frac{\delta_{\mathrm{EuL}} \times c_{\mathrm{Eu}}}{\left(1-\delta_{\mathrm{EuL}}\right) \times c_{\mathrm{Eu}} \times\left(c_{\mathrm{L}}-\delta_{\mathrm{EuL}} \times \mathrm{c}_{\mathrm{Eu}}\right)}=\frac{\delta_{\mathrm{EuL}}}{\left(1-\delta_{\mathrm{EuL}}\right) \times\left(c_{\mathrm{L}}-\delta_{\mathrm{EuL}} \times \mathrm{c}_{\mathrm{Eu}}\right)} \tag{S6}
\end{equation*}
$$

Substituting Eq. (S5) by Eq. (S2)

$$
\begin{equation*}
\frac{q_{\mathrm{H}_{2} \mathrm{O}, \mathrm{EuL}-\mathrm{Eu}}+0.70}{1.05}=\frac{q_{\mathrm{H}_{2} \mathrm{O}, \mathrm{EuL}}+0.70}{1.05} \times \delta_{\mathrm{EuL}}+\frac{q_{\mathrm{H}_{2} \mathrm{O}, \mathrm{Eu}}+0.70}{1.05} \times\left(1-\delta_{\mathrm{EuL}}\right) \tag{S7}
\end{equation*}
$$

and the new Equation is obtained after arrangement:

$$
\begin{equation*}
q_{\mathrm{H}_{2} \mathrm{O}, \mathrm{EuL}-\mathrm{Eu}}=q_{\mathrm{H}_{2} \mathrm{O}, \mathrm{EuL}} \times \delta_{\mathrm{EuL}}+q_{\mathrm{H}_{2} \mathrm{O}, \mathrm{Eu}} \times\left(1-\delta_{\mathrm{EuL}}\right) \tag{S8}
\end{equation*}
$$

Thus, the relative concentration of $\mathrm{Eu}($ III $)$ complex can be calculated as

$$
\begin{equation*}
\delta_{\mathrm{EuL}}=\frac{q_{\mathrm{H}_{2} \mathrm{O}, \mathrm{Eu}}-q_{\mathrm{H}_{2} \mathrm{O}, \mathrm{EuL}-\mathrm{Eu}}}{q_{\mathrm{H}_{2} \mathrm{O}, \mathrm{Eu}}-q_{\mathrm{H}_{2} \mathrm{O}, \mathrm{EuL}}} \tag{S9}
\end{equation*}
$$

Assuming the chemical reaction (A), the Eq. (S9) can be simplified as

$$
\begin{equation*}
\delta_{\mathrm{EuL}}=\frac{9-q_{\mathrm{H}_{2} \mathrm{O}, \mathrm{EuL}-\mathrm{Eu}}}{6} \tag{S10}
\end{equation*}
$$

and this relationship can be used for calculation of equilibrium constant (see Eq. (S6)). To get stability constant which is independent on pH :

$$
\begin{equation*}
\log \beta_{\mathrm{EuL}}=\log K_{\mathrm{eff}, \mathrm{EuL}}-\log \alpha_{\mathrm{L}(\mathrm{H})} \tag{S11}
\end{equation*}
$$

where the term is calculated as

$$
\begin{equation*}
\alpha_{\mathrm{LH}(\mathrm{H})}=1+K_{\mathrm{p} 1} \times\left[\mathrm{H}^{+}\right]+K_{\mathrm{p} 1} \times K_{\mathrm{p} 2} \times\left[\mathrm{H}^{+}\right]^{2}+\ldots \tag{S12}
\end{equation*}
$$

Analogously, the equilibrium constant for the following reaction at given pH

$$
\begin{equation*}
\left[\mathrm{Tb}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]^{3+}+\mathrm{L} \stackrel{K_{\text {effrbu }}}{\longleftrightarrow}\left[\mathrm{TbL}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}+6 \mathrm{H}_{2} \mathrm{O} \tag{Eq_B}
\end{equation*}
$$

is defined as

$$
\begin{equation*}
K_{\mathrm{eff}, \mathrm{TbL}}=\frac{[\mathrm{TbL}]}{[\mathrm{Tb}] \times[\mathrm{L}]} \tag{S13}
\end{equation*}
$$

as well as

$$
\begin{equation*}
q_{\mathrm{H}_{2} \mathrm{O}, \mathrm{TbL}-\mathrm{Tb}}=q_{\mathrm{H}_{2} \mathrm{O}, \mathrm{TbL}} \times \delta_{\mathrm{TbL}}+q_{\mathrm{H}_{2} \mathrm{O}, \mathrm{~Tb}} \times\left(1-\delta_{\mathrm{TbL}}\right) \tag{S14}
\end{equation*}
$$

Thus the relative concentration of Tb (III) complex can be calculated as

$$
\begin{equation*}
\delta_{\mathrm{TbL}}=\frac{q_{\mathrm{H}_{2} \mathrm{O}, \mathrm{~Tb}}-q_{\mathrm{H}_{2} \mathrm{O}, \mathrm{TbL}-\mathrm{Tb}}}{q_{\mathrm{H}_{2} \mathrm{O}, \mathrm{~Tb}}-q_{\mathrm{H}_{2} \mathrm{O}, \mathrm{TbL}}} \tag{S15}
\end{equation*}
$$

Assuming the chemical reaction (B), the Eq. (14) can be simplified as

$$
\begin{equation*}
\delta_{\mathrm{TbL}}=\frac{8-q_{\mathrm{H}_{2} \mathrm{O}, \mathrm{TbL}-\mathrm{Tb}}}{6} \tag{S16}
\end{equation*}
$$

and this relationship can be used for calculation of equilibrium constant (see Eq. (S13)).
To get stability constant independent on pH :

$$
\begin{equation*}
\log \beta_{\mathrm{EuL}}=\log K_{\mathrm{eff}, \mathrm{EuL}}-\log \alpha_{\mathrm{L}(\mathrm{H})} \tag{S17}
\end{equation*}
$$

Fig. S1: The examples of emission spectra of $[\mathrm{Eu}(\mathrm{do} 2 \mathrm{a})]^{+}$complex measured for various $c_{\mathrm{L}} / c_{\text {Eu }}$ ratios and $\mathrm{pH}=5.6-6.4\left(\lambda_{\text {exc }}=394 \mathrm{~nm}, c_{\mathrm{Eu}}=1 \mathrm{mM}, \mathrm{I}=0.1 \mathrm{M}(\mathrm{KCl})\right)$.

Table S3: The calculated stability constants of $[\mathrm{Eu}(\mathrm{do} 2 \mathrm{a})]^{+}$complex.
The experimental conditions are the same as in Fig. S1.

$\begin{gathered} \mathrm{pH} \\ \log \beta_{\mathrm{EuL}} \\ \hline \end{gathered}$	Ratio $c_{\text {L }} / c_{\text {Eu }}$		
	1	1.75	2.5
5.6	12.65	12.52	13.19
6.0	11.78	12.11	12.31
Average value	$12.4{ }_{3} \pm 0.49$		

Fig. S2: The examples of luminescence-decay traces of the $\mathrm{Eu}(\mathrm{III})-\mathrm{H}_{2}$ do2a system measured for the $c_{\mathrm{L}} / c_{\mathrm{Eu}}=1, \mathrm{pH}=5.6$ (black) and $c_{\mathrm{L}} / c_{\mathrm{Eu}}=2.5, \mathrm{pH}=6.0$ (red). $\lambda_{\mathrm{exc}}=394 \mathrm{~nm}$, $\left(\lambda_{\mathrm{em}}=618 \mathrm{~nm} c_{\mathrm{Eu}}=1 \mathrm{mM}, \mathrm{I}=0.1 \mathrm{M}(\mathrm{KCl})\right)$.

Table S4: The calculated stability constants of $[\mathrm{Eu}(\mathrm{do} 2 \mathrm{a})]^{+}$complex ${ }^{\text {a }}$. The experimental conditions are the same as in Fig. S2.

$\begin{gathered} \mathrm{pH} / q^{\mathrm{a}} \\ \left(\log \beta_{\mathrm{EuL}}{ }^{\mathrm{b}}\right) \\ \hline \end{gathered}$	Ratio $c_{L} / c_{\text {Eu }}$		
	1	1.75	2.5
5.6	4.72 (13.24)	4.35 (12.85)	4.11 (12.72)
6.0	4.60 (12.51)	4.31 (12.06)	3.83 (12.07)
Average value	$12.57 \pm 0.4_{6}$		

a) calculated as $q=1.02 \times 10^{-3} k_{\text {obs }}-0.17$ [see T. Kimura and Y. Kato, J. Alloys Comp., 1998, 278, 92-97)
b) assuming the equilibrium $\left[\mathrm{Eu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}\right]^{3+}+\mathrm{L} \leftrightarrow\left[\mathrm{EuL}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{+}+6 \mathrm{H}_{2} \mathrm{O}$

Fig. S3: The examples of emission spectra of $[\mathrm{Tb}(\mathrm{do} 2 \mathrm{a})]^{+}$complex measured for various $c_{\mathrm{L}} / c_{\mathrm{Tb}}$ ratios and $\mathrm{pH}=5.6-6.4\left(\lambda_{\mathrm{exc}}=355 \mathrm{~nm}, c_{\mathrm{Tb}}=1 \mathrm{mM}, \mathrm{I}=0.1 \mathrm{M}(\mathrm{KCl})\right)$.

Table S5: The calculated stability constants of $[\mathrm{Tb}(\mathrm{do} 2 \mathrm{a})]^{+}$complex.
The experimental conditions are the same as in Fig. S3.

$\begin{gathered} \mathrm{pH} \\ \log \beta_{\mathrm{EuL}} \end{gathered}$	Ratio $c_{\text {L }} / c_{\text {Eu }}$		
	1	1.75	2.5
5.6	12.79	12.88	12.64
6.0	12.45	12.10	12.12
Average value	$12.50 \pm 0.3_{3}$		

Fig. S4: The examples of luminescence-decay traces of the $\mathrm{Tb}(\mathrm{III})-\mathrm{H}_{2} \mathrm{do} 2 \mathrm{a}$ system measured for the $c_{\mathrm{L}} / c_{\mathrm{Tb}}=1, \mathrm{pH}=5.6$ (black) and $c_{\mathrm{L}} / c_{\mathrm{Tb}}=2.5, \mathrm{pH}=6.0$ (red). $\lambda_{\text {exc }}=355$ $\left.\mathrm{nm}, \lambda_{\mathrm{em}}=545 \mathrm{~nm}, c_{\mathrm{Tb}}=1 \mathrm{mM}, \mathrm{I}=0.1 \mathrm{M}(\mathrm{KCl})\right)$.

Table S6: The calculated stability constants of $[\mathrm{Tb}(\mathrm{DO} 2 \mathrm{~A})]^{+}$complex ${ }^{\text {a }}$.
The experimental conditions are the same as in Fig. S4.

$\mathbf{p H} / \boldsymbol{q}^{\mathbf{a}}$			
$\left(\boldsymbol{\operatorname { l o g } \boldsymbol { \beta } _ { \text { EuL } } { } ^ { \mathbf { b } })}\right.$	Ratio $\boldsymbol{c}_{\mathbf{L}} / \boldsymbol{c}_{\text {Eu }}$		
	$\mathbf{1}$	$\mathbf{1 . 7 5}$	$\mathbf{2 . 5}$
$\mathbf{5 . 6}$	$3.86(\mathbf{1 3 . 1 5})$	$3.24(\mathbf{1 2 . 9 0})$	$3.07(\mathbf{1 2 . 7 4)}$
$\mathbf{6 . 0}$	$3.57(\mathbf{1 2 . 5 3})$	$3.00(\mathbf{1 2 . 2 3})$	$2.67(\mathbf{1 2 . 1 9})$
Avg value		$\mathbf{1 2 . 6} \mathbf{2} \mathbf{~} \pm \mathbf{0 . 3}_{\mathbf{8}}$	

a) calculated as $q=4.00 \times 10^{-3} k_{\text {obs }}-0.93$ (see T. Kimura and Y. Kato, J. Alloys Comp., 1998, 278, 92-97).
b) assuming the equilibrium $\left[\mathrm{Tb}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]^{3+}+\mathrm{L} \leftrightarrow\left[\mathrm{TbL}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}+6 \mathrm{H}_{2} \mathrm{O}$

Fig. S5: The distribution diagram of $\mathrm{Eu}(\mathrm{III})-\mathrm{H}_{2} \mathrm{do} 2 \mathrm{a}$ system (equilibrium speciation diagram).

Fig. S6: The formation of $\mathrm{Eu}(\mathrm{III})$ and Tb (III) complexes with $\mathrm{H}_{2} \mathrm{do}$ a ligand and $\mathrm{Gd}(\mathrm{III})$ complexes with H_{3} do3a and H_{4} dota ligands (the experimental data were taken and recalculated from [Refs. 1 and 2].
[Ref. 1] X. Wang, T. Jin, V. Comblin, A. Lopez-Mut, E. Merciny and J.F. Desreux, Inorg. Chem., 1992, 31, 1095-1099.
[Ref. 2] K. Kumar and M.F. Tweddle, Inorg. Chem., 1993, 37, 4193-4199.

The formation of $[\mathrm{Eu}(\mathrm{do} 2 \mathrm{a})]^{+}$complex - reaction mechanism

The formation of $\mathrm{Eu}($ III $)$ complex can be described by two-step reaction mechanism (the charges of species are omitted for the sake of clarity):
$\mathrm{Eu}+\mathrm{H}_{x} \mathrm{~L} \stackrel{K^{*}}{\longleftrightarrow}\left[\mathrm{Eu}\left(\mathrm{H}_{y} \mathrm{~L}\right)\right]^{*}+(x-y) \mathrm{H}^{+}$
$\left[\mathrm{Eu}\left(\mathrm{H}_{y} \mathrm{~L}\right)\right]^{*} \xrightarrow{k^{*}}[\mathrm{EuL}]+y \mathrm{H}^{+}$

Generally, the rate of formation of $\mathrm{Eu}(\mathrm{III})$ complex can be described as
$v=k_{2, \mathrm{f}} \times[\mathrm{Eu}]_{\mathrm{tot}} \times[\mathrm{L}]_{\mathrm{tot}}$
For reaction mechanism mentioned above, the rate of formation of $\mathrm{Eu}(\mathrm{III})$ complex is

$$
\begin{equation*}
v=k^{*} \times\left[\mathrm{EuL}^{*}\right] \tag{S19}
\end{equation*}
$$

knowing the equilibrium constant K^{*}
$K^{*}=\frac{\left[\mathrm{EuL}^{*}\right]}{[\mathrm{Eu}] \times\left[\mathrm{H}_{x} \mathrm{~L}\right]}$
In metal excess $\left(c_{\mathrm{Eu}} \gg c_{\mathrm{L}}\right)$, the previous equations can be modified as
$v=k^{*} \times \frac{K^{*} \times[\mathrm{Eu}]_{\mathrm{tot}}}{1+K^{*} \times[\mathrm{Eu}]_{\mathrm{tot}}} \times[\mathrm{L}]_{\mathrm{tot}} \Rightarrow k_{\mathrm{f}, \mathrm{obs}}=k^{*} \times \frac{K^{*} \times[\mathrm{Eu}]_{\mathrm{tot}}}{1+K^{*} \times[\mathrm{Eu}]_{\mathrm{tot}}}$
and analogously in ligand excess $\left(c_{\text {Eu }} \ll c_{\mathrm{L}}\right)$
$v=k^{*} \times \frac{K^{*} \times[\mathrm{L}]_{\mathrm{tot}}}{1+K^{*} \times[\mathrm{L}]_{\mathrm{tot}}} \times[\mathrm{Eu}]_{\mathrm{tot}} \Rightarrow k_{\mathrm{f}, \mathrm{obs}}=k^{*} \times \frac{K^{*} \times[\mathrm{L}]_{\mathrm{tot}}}{1+K^{*} \times[\mathrm{L}]_{\mathrm{tot}}}$
It is evident $k_{2, \mathrm{f}}=k^{*} \times K^{*}[\operatorname{Refs} 1,2]$. Also in case when nominator ≈ 1, then
$k_{\mathrm{f}, \text { obs }}=k^{*} \times K^{*} \times[\mathrm{Eu}]_{\text {tot }}=k_{2, \mathrm{f}} \times[\mathrm{Eu}]_{\text {tot }}\left(c_{\mathrm{Eu}} \gg c_{\mathrm{L}}\right)$
$k_{\mathrm{f}, \text { obs }}=k^{*} \times K^{*} \times[\mathrm{L}]_{\mathrm{tot}}=k_{2, \mathrm{f}} \times[\mathrm{L}]_{\mathrm{tot}} \quad\left(c_{\mathrm{Eu}} \ll c_{\mathrm{L}}\right)$
X. Wang, T. Jin, V. Comblin, A. Lopez-Mut, E. Merciny and J.F. Desreux, Inorg. Chem., 1992, 31, 1095-1099.
2. M.P.C. Campello, S. Lacerda, I.C. Santos, G.A. Pereiera, G.F.G.C. Geraldes, J. Kotek, P. Hermann, J. Vaněk, P. Lubal, V. Kubíček, E. Tóth and I. Santos, Chem. Eur. J., 2010, 16, 8446-8465.

Fig. S7.: The plot of pseudo-first rate constants of $\mathrm{Eu}(\mathrm{III})$ complex formation as function of europium(III) concentration. The second-order rate constant 0.463 $\mathrm{M}^{-1} \mathrm{~s} .{ }^{-1}$ was obtained as slope linear dependence.

Fig. S8: The distribution diagram of $\mathrm{Eu}(\mathrm{III})-\mathrm{H}_{2} \mathrm{do} 2 \mathrm{a}$ system (kinetic speciation diagram).

$\underline{\text { Thermodynamics vs. kinetics of }[\operatorname{Ln}(\mathrm{do} 2 \mathrm{a})]^{+} \text {complexes }}$

The consistency of obtained kinetic parameters can be verified by calculation of stability constant of $\operatorname{Ln}($ III $)$ complexes. For the following chemical reaction

$$
\begin{equation*}
\mathrm{LnL}^{+}+\mathrm{H}^{+} \Leftrightarrow \mathrm{Ln}^{3+}+\mathrm{HL}^{-} \tag{Eq_D}
\end{equation*}
$$

the kinetic rate law ii defined as

$$
\begin{equation*}
v=k_{\mathrm{H}} \times[\mathrm{LnL}] \times\left[\mathrm{H}^{+}\right]=k_{\mathrm{HL}} \times[\mathrm{Ln}] \times[\mathrm{HL}] \tag{S24}
\end{equation*}
$$

which can be defined in enlarged form

$$
\begin{equation*}
v=k_{\mathrm{H}} \times \beta_{\mathrm{LnL}} \times[\mathrm{Ln}] \times[\mathrm{L}] \times\left[\mathrm{H}^{+}\right]=k_{\mathrm{HL}} \times[\mathrm{Ln}] \times K_{\mathrm{HL}} \times\left[\mathrm{H}^{+}\right] \times[\mathrm{L}] \tag{S25}
\end{equation*}
$$

where equilibrium constants are defined as

$$
\begin{equation*}
\beta_{\mathrm{LnL}}=\frac{[\mathrm{LnL}]}{[\mathrm{Ln}] \times[\mathrm{L}]} \text { and } K_{\mathrm{HL}}=\frac{[\mathrm{HL}]}{\left[\mathrm{H}^{+}\right] \times[\mathrm{L}]} \tag{S26}
\end{equation*}
$$

Then after simplification

$$
\begin{equation*}
k_{\mathrm{H}} \times \beta_{\mathrm{LnL}}=k_{\mathrm{HL}} \times K_{\mathrm{HL}} \tag{S27}
\end{equation*}
$$

the final relationship is derived

$$
\begin{equation*}
\beta_{\mathrm{LnL}}=\frac{k_{\mathrm{HL}}}{k_{\mathrm{H}}} \times K_{\mathrm{HL}} \tag{S28A}
\end{equation*}
$$

or in logarithmic form as

$$
\begin{equation*}
\log \beta_{\mathrm{LnL}}=\log \left(\frac{k_{\mathrm{HL}}}{k_{\mathrm{H}}}\right)+\log K_{\mathrm{HL}} \tag{S28B}
\end{equation*}
$$

The meaning of rate constants k_{HL} and k_{H} defined for the formation and dissociation reaction of $\operatorname{Ln}(\mathrm{III})$ complexes is connected with parameters defined earlier. The overall rate constant for formation of Ln (III) complex

$$
\mathrm{Ln}^{3+}+\mathrm{HL}^{-} \xrightarrow{k_{\mathrm{HI}}} \mathrm{LnL}+\mathrm{H}^{+}
$$

The dissociation constant of $\operatorname{Ln}(\mathrm{III})$ complex was described by another reaction pathway as

$$
\begin{align*}
& \mathrm{LnL}^{+}+\mathrm{H}^{+} \xrightarrow{K_{\mathrm{H}, \mathrm{LLL}}} \mathrm{Ln}(\mathrm{HL})^{2+} \\
& \mathrm{Ln}(\mathrm{HL})^{2+} \xrightarrow{k_{\mathrm{Ln}(\mathrm{HL})}} \mathrm{Ln}^{3+}+\mathrm{HL}^{-} \tag{Eq_G}
\end{align*}
$$

The pseudo-first order rate constant for Ln (III) complex dissociation is defined as

$$
\begin{equation*}
k_{\mathrm{d}, \mathrm{obs}}=\frac{k_{\mathrm{Ln}(\mathrm{HL})} \times K_{\mathrm{H}, \mathrm{LnL}} \times\left[\mathrm{H}^{+}\right]}{1+K_{\mathrm{H}, \mathrm{LnL}} \times\left[\mathrm{H}^{+}\right]}=\frac{k_{\mathrm{H}} \times\left[\mathrm{H}^{+}\right]}{1+K_{\mathrm{H}, \mathrm{LnL}} \times\left[\mathrm{H}^{+}\right]} \tag{S29}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{\mathrm{H}}=k_{\mathrm{Ln}(\mathrm{HL})} \times K_{\mathrm{H}, \mathrm{LnL}} \tag{S30}
\end{equation*}
$$

