Synthesis and bioapplication of a highly selective and sensitive fluorescent probe for HOCl based on a phenothiazine-dicyanoisophorone conjugate with large Stokes shift

Dasheng Zheng, ^a Xiaoying Qiu, ^a Chang Liu, ^a Xiaojie Jiao, ^a Song He, ^a Liancheng Zhao ^{a,b}, Xianshun Zeng ^{*a,b}

^a Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China. Email: xshzeng@tjut.edu.cn.

^b School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.

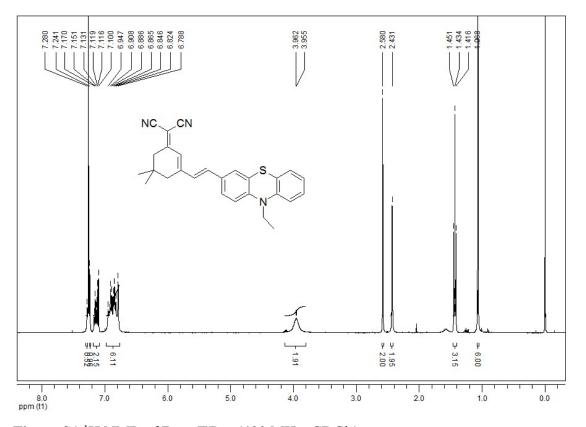
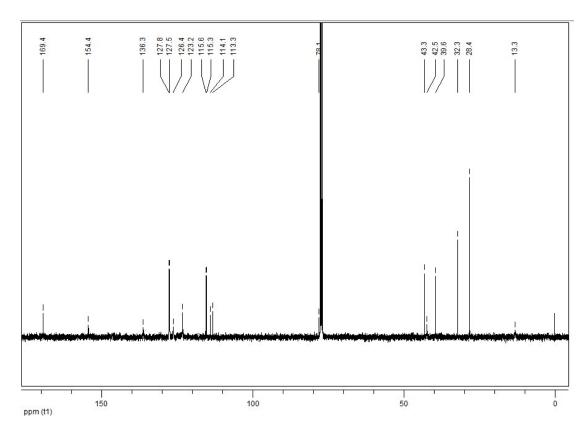
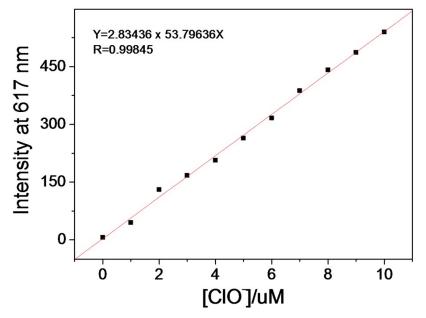
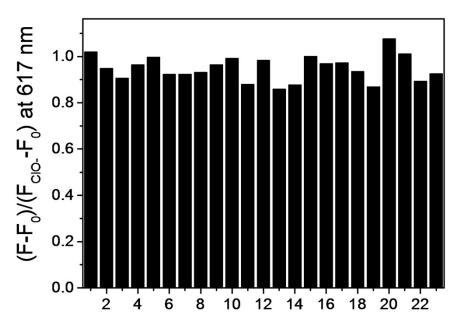
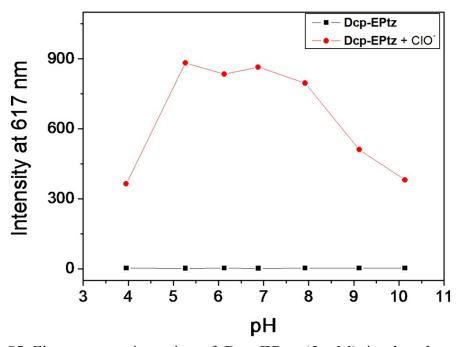


Figure S1 ¹H NMR of Dcp-EPtz (400 MHz, CDCl₃).


Figure S2 ¹³C NMR of Dcp-EPtz (100 MHz, CDCl₃).

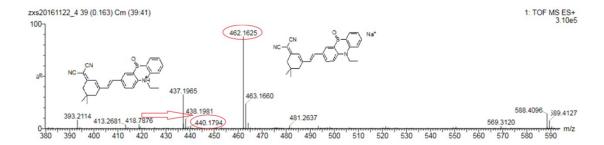

Figure S3 Emission (at 617 nm) of **L** at different concentrations of ClO⁻A linear relationship between the fluorescence intensity and the ClO⁻ concentration could be obtained in the 0-10.0 μ M concentration range (R = 0.998).The detection limit was then calculated with the equation: detection limit = 3σ bi/m, where σ bi is the standard deviation of blank measurements (3σ bi = 2.1113, derived from ten measurements), m is the slope between intensity versus sample concentration. The detection limit was measured to be 3.9×10^{-8} M.

Figure S4 Change ratio (F - F₀)/(F_{ClO}⁻ - F₀) of fluorescence intensity of **L** (5 μM) upon the addition of 10.0 equiv. ClO⁻ in the presence of 10.0 equiv. other anions and ROS in PBS: ethanol=1:1 (10 mM, pH = 7.4, v/v). 1: AcO⁻, 2: Br⁻, 3: Cl⁻, 4: ClO⁻, 5: ClO₄⁻, 6: CO₃²⁻, 7: F⁻, 8: H₂O₂, 9: H₂PO₄⁻, 10: HCO₃⁻, 11: HPO₄²⁻, 12: HSO₄⁻, 13: NO, 14: NO₂⁻, 15: NO₃⁻, 16: O₂⁻, 17: ·OH, 18: ONOO⁻, 19: PO₄³⁻, 20: SO₃²⁻, 21: SO₄²⁻, 22: TBHP, 23: O₂¹.

Figure S5 Fluorescence intensity of **Dcp-EPtz** (5 μ M) in the absence and presence of NaClO (10.0 equiv.) at various pH values (from 4.0 to 10.0) in PBS: ethanol=1:1 (10 mM, pH = 7.4, v/v) at 617 nm. λ_{ex} = 475 nm, slit: 5 nm, 5 nm.

Figure S6 HRMS spectra of **Dcp-EPtz** upon addition of ClO⁻ (2.0 equivalents). The peak at [**Dcp-EPtzO** + Na]⁺ = 462.1625 (calc. m/z 462.1616) and a weak peak at [**Dcp-EPtzO** + H]⁺ = 440.1794 (calc. m/z 440.1791) corresponded to **Dcp-EPtzO**, respectively.