Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

The Correlation between Multiple Variable Factors and Autocatalytic Property of Cerium Oxide Nanoparticles based on Cell Viability

Changyan Li^{a,b}, Xiangcheng Shi^{a,b}, Liang Bao^{c,d}, Jingjie Yang^{a,b}, Alatangaole

Damirin ^c, Jun Zhang ^{a,b*}

^a College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.

R. China

^b Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University,

Hohhot 010021, P. R. China

^c College of Life Sciences, Inner Mongolia University, Hohhot 010021, P. R. China

^d College of Biochemical Engineering, Hohhot Vocational College, Hohhot, 010051, P. R. China

* Corresponding author:

Jun Zhang, Ph.D.

College of Chemistry and Chemical Engineering,

Inner Mongolia University, Hohhot 010021, P. R. China

Tel: 86-471-4995400

E-mail: cejzhang@imu.edu.cn

Figure Captions

Figure 1. The functional relationship between particle size and lattice parameter of Ce NPs (111) lattice plane for S1, S2 and S3 samples

Figure 2. The functional relationship between particle size and atomic ratio of Ce^{3+} in S1, S2 and S3 Ce NPs samples

Figure 3. TEM images (a and b) and corresponding particle size distribution (c and d) of S2 sample.

Figure 4. Forecast with PLSR of cell viability at different mean particles size (a) S1-2.1 nm, S2-6.8 nm, S3 73.9 nm, (b) S1-2.1 nm, S2-12.7 nm, S3-73.9 nm, (c) S1-2.1 nm, S2-15.2 nm, S3 73.9 nm, and (d) S1-2.1 nm, S2-32.8 nm, S3 73.9 nm (

▲represents S1 sample●represents S2 sample ◆represents S3 sample)

Figure 5. Particle size distribution of S1, S2 and S3 samples in ultrapure water (a-c) and in cell culture medium (d-f) at 200 ng/uL concentration determined by dynamic light scattering.

Figure 6. The relationship between the percent of variance explained in the response variable and the number of components.

Figure 1.

Figure 2.

 $y = 0.4069 - 0.02158 * ln^{(n)}(x + 1.0706)$

Figure 3.

Figure 4.

The particle size acted as a significant factor in their regression models, changes in particle size could cause the potential impacts on their resultant findings. PLSR is more reliable for adjusting a model for output prediction¹. It is worth noting that partial least squares regression model has some tolerance when the particle size of S2 sample deviate from the average. In order to demonstrate the impacts to this partial least square regression model, we added a prediction of cell viability with different particle sizes in the Support Information. We input four groups of particle sizes (S1-2.1 nm, S2-6.8 nm, S3-73.9 nm; S1-2.1 nm, S2-12.7 nm, S3-73.9 nm; S1-2.1 nm, S2-15.2 nm, S3 73.9 nm and S1-2.1 nm, S2-32.8 nm, S3 73.9 nm) and then calculate using the regression model (Figure S4). The diagonal line indicates that the theoretical prediction is equal to the experimental test value. The red line represents the fitted line of the regression model, when the particle size of S2 sample is changed in each group. From the forecast value of regression model, the R-square of the fit are 0.97336, 0.97526, 0.97406 and 0.96434, respectively. The percent errors between the calculation and the experiment are 2.41%, 2.43%, 2.45%, 2.95%, respectively. It is clearly exhibited that there is a 2.95% deviation between the forecast value and actual experiment value when the particle size of S2 sample was 32.8 nm². It also indicated that 32.8 nm

particle size should be a significant factor in their regression model. However, when the percent error between prediction and experiment exceed a certain threshold (\geq 5%), it is better to reconsider the regression method, to reexamine the input data, to screened outliers and to review the internal correlation between independent and dependent variables.

Figure 5.

Figure S5 showed that the particle size distribution was larger than those of TEM images. These phenomena exhibited that Ce NPs agglomerate in ultrapure water and in cell culture medium. These results were mainly caused by the change of electronic repulsive force and the electrostatic attraction. In ultrapure water, electrostatic repulsive forces had decreased between Ce NPs, which resulted in Ce NPs agglomerating. While in cell culture medium, negative proteins were adsorbed by electrostatic attraction to the positively charged S1 surface. As a result, the net interaction force represented by electrostatic repulsive forces and van der Waals attraction force was changed. Electrostatic attraction force became dominant against the electronic repulsive force and der Waals attraction force, and then lead to S1 sample agglomeration, which could also

explain the particle size increase of S2 and S3 samples were mixed with cell culture medium³⁻⁴.

Figure 6.

The number of principal components was determined as 3 by 'pcacov' function in Matlab software. It was calculated the relationship between the percent of variance explained in the response variable and the number of principal components for further PLSR, as it was shown in Figure S6. From Figure S6, it could be observed that the ratio of the characteristic value is greater than 97.75% or even close 100% when the number of principal component was 3.

Table Captions

 Table 1. Composition of RPM1 Cell Culture Medium 1640 5

Table 2. Comparison table between a partial least-square regression (PLSR) method

 and Matlab code

Table 1.

Constituent	Concentration, mg/liter
Amino acids	
<i>l</i> -Arginine, positive charge	200
<i>l</i> -Asparagine	50
<i>l</i> -Aspartic acid, negative charge	20
<i>l</i> -Cystine	50
<i>l</i> -Glutamic acid, negative	20
charge	
<i>l</i> -Glutamine	300
Glutathione, reduced	1
Glycine	10
<i>l</i> -Histidine, positive charge	15
<i>l</i> -Hydroxyproline	20
<i>l</i> -Isoleucine, positive charge	50
<i>l</i> -Leucine, positive charge	50
<i>l</i> -Lysine hydrochloride	40
<i>l</i> -Methionine. positive charge	15
<i>l</i> -Phenylalanine	15
<i>l</i> -Proline	20
<i>l</i> -Serine	30
<i>l</i> -Threonine	20
<i>l</i> -Tryptophan	5
<i>l</i> -Tyrosine, positive charge	20
<i>l</i> -Valine	20
Vitamins	
para-Aminobenzoic acid	1
Biotin	0.2
Calcium pantothenate	0.25
Choline chloride	3
Cyanocobalamin	0.005
Folic acid	1
l-Inositol	35
Nicotinamide	1
Pvridoxine hydrochloride	1
Riboflavin	0.2
Thiamine hydrochloride	1
Salts	
Calcium nitrate tetrahydrate	100
Disodium phosphate	1512
heptahydrate	
Magnesium sulfate heptahydrate	100
Potassium chloride	400
Sodium bicarbonate	2000
Sodium chloride	6000
Miscellaneous	•
Glucose	2000
Phenolsulfonphthalein	5

Table 2.

Step 1	Clear all input and output from	clc,clear
	the Command Window display,	
	and remove items from	
	workspace, freeing up system	
	memory.	
Step 2	Create the array of cytotoxicity according to Table 1. The first to fifth column represent the five independent variables respectively. From left to right: CeNPs particle size, BET surface area, [Ce ³⁺], zeta-potential in cell culture medium and concentration. The sixth column represents the dependent variable: cell viability. Standardize the array. Divide the independent variable and dependent variable into two matrixes, XX and YY	CeNPs = [2.12 134.2371 0.38 -6.23 20 104.56 2.12 134.2371 0.38 -6.23 40 99.65 2.12 134.2371 0.38 -6.23 120 92.39 2.12 134.2371 0.38 -6.23 200 76.50 12.66 117.3064 0.354 -6.75 20 94.63 12.66 117.3064 0.354 -6.75 40 91.53 12.66 117.3064 0.354 -6.75 120 83.73 12.66 117.3064 0.354 -6.75 200 73.44 74.23 114.1727 0.312 -8.26 20 81.14 74.23 114.1727 0.312 -8.26 40 70.85 74.23 114.1727 0.312 -8.26 120 62.66 74.23 114.1727 0.312 -8.26 200 54.70]; zsCeNPs = zscore(CeNPs); XX = zsCeNPs(:,1:end-1); YY = zsCeNPs(:,end);
Step 3	respectively. Calculate the covariance matrix of the array of cytotoxicity as function 'pcacov' requires covariance matrix input.	r = cov(CeNPs);

	Return a vector 'rate' containing	<pre>[vec1, lamda, rate] = pcacov(XX);</pre>
	the percentage of the total	
	principal component	
	Plot the percent of variance	<pre>contr = cumsum(rate)';</pre>
	explained in the response	<pre>plot(1:6,contr,'-bo');</pre>
	variable as a function of the	ylim([0 100]);
	number of components.	xlabel('Number of PLS
		<pre>components'); ylabel('Percent</pre>
		Variance Explained in y');
	According to the above plot, an	<pre>ncomp = input('The number of</pre>
	appropriate principal number of	components = ')
	components can be confirmed	
	and then be input as <i>ncomp</i> .	
	Computes a partial least-squares	[XL,YL,XS,YS,BETA] =
	(PLS) regression of dependent	<pre>plsregress(XX,YY,ncomp);</pre>
	variable on independent variable,	
	using <i>ncomp</i> principal	
	components, and returns the PLS	
	regression coefficients <i>BETA</i> .	
Ste	Calculate the constant term of	n = size(XX, 2);
ġ	regression equation	mu = mean(CeNPs);
4		sig = sta(CeNPS);
		beta2(1) = mu(end) -
		mu(1:n)./sig(1:n)^BETA([2:end]).^
		$s_{12}(e_{111}),$
		(1 / sig(1:n)) + sig(n+1:end) *BETA
		([2:end])
	Use the regression equation to	vfit =
	det a series of model value and	beta2(1)+beta2(2)*CeNPs(:,1)+beta
	make a plot of model value as a	2(3)*CeNPs(:,2)+beta2(4)*CeNPs(:,
Ste	function of actual value to test the	3) +beta2(5) *CeNPs(:,4) +beta2(6) *C
q	reliability of regression equation.	eNPs(:,5);
U U		<pre>plot(CeNPs(:,6)',yfit','o');</pre>
		<pre>xlabel('Actual value');</pre>
		ylabel('Model value')

Test the reliability of regression	[h,p] =
equation by assessing whether	<pre>ttest(CeNPs(:,6),yfit,0.01);</pre>
the array of model and actual	
value have close population	
mean.	
The returned h value is 0	
indicates that at the 1%	
significance level, regression	
equation is reliable.	
Furthermore, we introduce	D = mean(abs((yfit -
percent error to quantitatively	CeNPs(:,6))./CeNPs(:,6)))*100
measure the closeness of the fit	
between the model and actual	
data.	

```
clc,clear
CeNPs = [2.12 134.2371 0.38 -6.23 20 104.56
2.12 134.2371 0.38 -6.23 40 99.65
2.12 134.2371 0.38 -6.23 120 92.39
2.12 134.2371 0.38 -6.23 200 76.50
12.66 117.3064 0.354 -6.75 20 94.63
12.66 117.3064 0.354 -6.75 40 91.53
12.66 117.3064 0.354 -6.75 120 83.73
12.66 117.3064 0.354 -6.75 200 73.44
74.23 114.1727 0.312 -8.26 20 81.14
74.23 114.1727 0.312 -8.26 40 70.85
74.23 114.1727 0.312 -8.26 120 62.66
74.23 114.1727 0.312 -8.26 200 54.70];
zsCeNPs = zscore(CeNPs);
XX = zsCeNPs(:,1:end-1); YY = zsCeNPs(:,end);
r = cov(CeNPs);
[vec1, lamda, rate] = pcacov(r);
contr = cumsum(rate)';
plot(1:6,contr,'-bo');ylim([0 100]);
xlabel('Number of PLS components'); ylabel('Percent Variance
Explained in y');
ncomp = input('The number of components = ')
[XL,YL,XS,YS,BETA] = plsregress(XX,YY,ncomp);
n = size(XX,2);mu = mean(CeNPs);sig = std(CeNPs);
beta2(1) = mu(end) -mu(1:n)./sig(1:n)*BETA([2:end]).*sig(end);
beta2(2:n+1) = (1./sig(1:n))'*sig(n+1:end).*BETA([2:end]);
yfit =
```

```
beta2(1)+beta2(2)*CeNPs(:,1)+beta2(3)*CeNPs(:,2)+beta2(4)*CeNPs(:,3)+
beta2(5)*CeNPs(:,4)+beta2(6)*CeNPs(:,5);
plot(CeNPs(:,6)',yfit','o');xlabel('Actual value');ylabel('Model
value')
[h,p] = ttest(CeNPs(:,6),yfit,0.01)
D = mean(abs((yfit - CeNPs(:,6))./CeNPs(:,6)))*100
```

Reference

- 1. J. L. Godoy, J. R. Vega and J. L. Marchetti, *Chemom. Intell. Lab. Syst.*, 2014, **130**, 182–191.
- H. Nawaz, F. Bonnier, P. Knief, O. Howe, F. M. Lyng, A. D. Meade and H. J. Byrne, *Analyst*, 2010, **135**, 3070-3076.
- 3. D. Kim, H. El-Shall, D. Dennis and T. Morey, *Colloids Surf.*, *B*, 2005, 40, 83–91.
- K. Rezwan, L. P. Meier, M. Rezwan, J. Vörös, M. Textor and L. J. Gauckler, Langmuir, 2004, 20, 10055–10061.
- 5. G. E. Moore, R. E. Gerner and H. A. Franklin, Jama, 1967, 199, 519-524.