Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Nitrooelfin-modified Cyclometalated iridium(III) complexes for

tunable detection of biothiols with deep-red emission

Entry	Reference	Sensing phase	LOD	Linear range	response time
1	This work	DMSO/HEPES=1:1	Ir1: 47.6 nM Ir2: 232 nM	10-80 µМ 25-150 µМ	80s 1min
2	Rsc. Adv., 2017,7(83):5262 1-52625	DMSO/HEPES=4:1	9.7 μΜ	50-450 μM	_
3	J. Inorg. Biochem. 2017, 177, 412-422	KPI/MeOH=1:1	_	-	_
4	Sci. Technol. Adv. Mat., 2016, 17, 109–114	DMSO/HEPES=9:1	1.67 μM	4-40 μΜ	_
5	Chem.Commun., 2016,52, 4450- 4453	DMSO/HEPES=4:1	0.78 μΜ	2.5 -80 μM	10 min
6	Opt. Express, 2016, 24, 28247–28255	CH ₃ CN/H ₂ O=3:2	_	-	_

 Table S1. Comparison with recent Ir(III)-based probes for biothiols

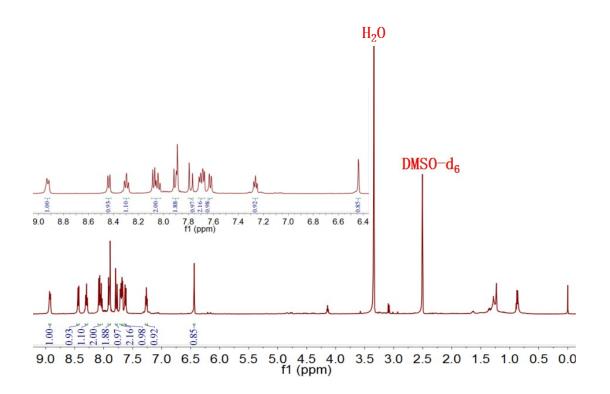


Fig S1. ¹H NMR spectrum of Ir1 in DMSO-d₆.

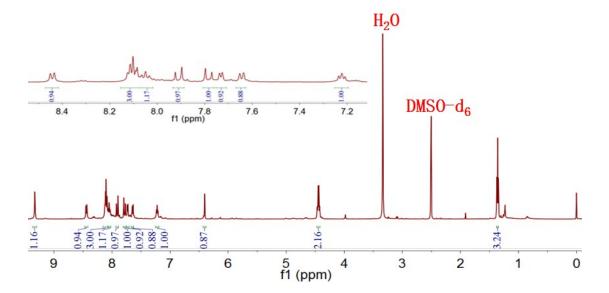


Fig S2. ¹H NMR spectrum of Ir2 in DMSO-d₆.

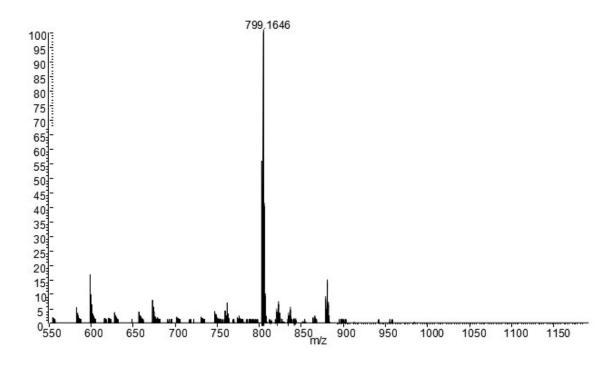


Fig S3. HRMS spectrum of Ir1 in CH₃CN.

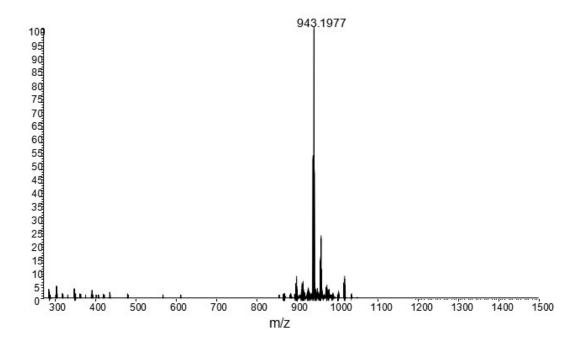


Fig S4. HRMS spectrum of Ir2 in CH₃CN.

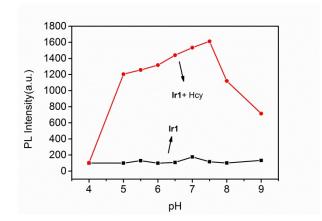
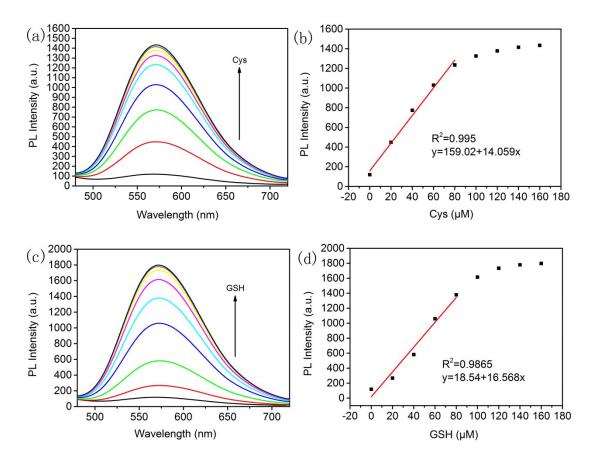
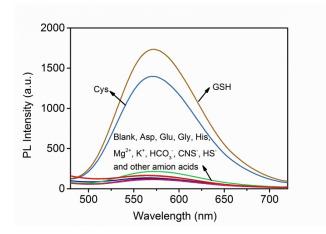




Fig S5. PL intensity of Ir1 (10 μ M) at 571nm in the presence and absence of Hcy under different pH. λ_{ex} =380 nm.

Fig S6. PL spectra of **Ir1** (10 μ M) upon addition of Cys (a) and GSH (c) (0-160 μ M) in DMSO/HEPES buffer solution (pH=7.4, 1:1, v/v); corresponding plot of PL intensity at 571 nm versus concentration of Cys (b) and GSH (d). λ_{ex} =380 nm.

Fig S7. PL intensity of **Ir1** (10 μ M) with various analytes (1 mM) including Asp, Glu, Gly, His, Lys, Thr, Mg²⁺, K⁺, HCO₃²⁻, CNS⁻, HS⁻, Ala, Arg, Phe, Pro, Ser, Trp, Tyr, GSSG, Cys and GSH in DMSO/HEPES buffer solution (pH=7.4, 1:1, v/v).

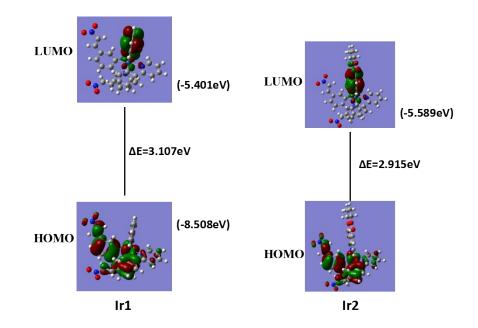
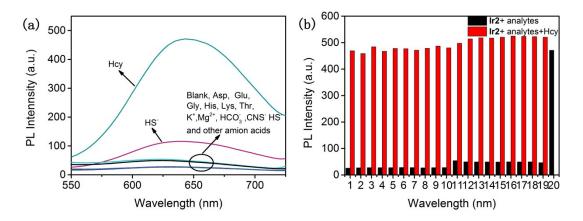



Fig S8. HOMO and LUMO Distributions of Ir1 and Ir2.

Fig S9. (a) PL intensity of **Ir2** (50 μM) in the presence of various analytes. (b) PL intensity of **Ir2** (50 μM) at 643 nm upon addition of Hcy and various analytes (1 mM) in DMSO/HEPES buffer solution (pH=7.4, 1:1, v/v) (1-Asp, 2-Glu, 3-Gly, 4-His, 5-Lys, 6-Thr, 7-Mg²⁺, 8-K⁺, 9-HCO₃²⁻, 10-CNS⁻ and 11-HS⁻, 12-Ala, 13-Arg, 14-Phe, 15-Pro, 16-Ser, 17-Trp, 18-Tyr, 19-GSSG, 20-Hcy respectively, 300 μM.). λ_{ex} = 380 nm.

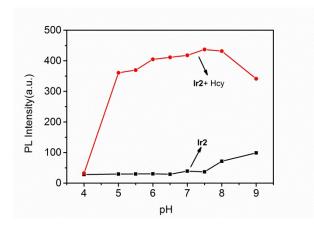
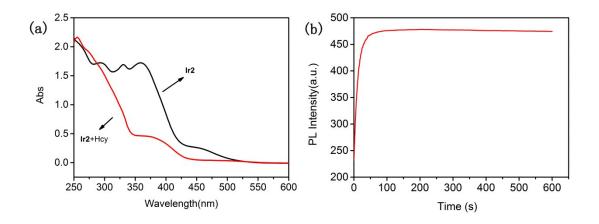
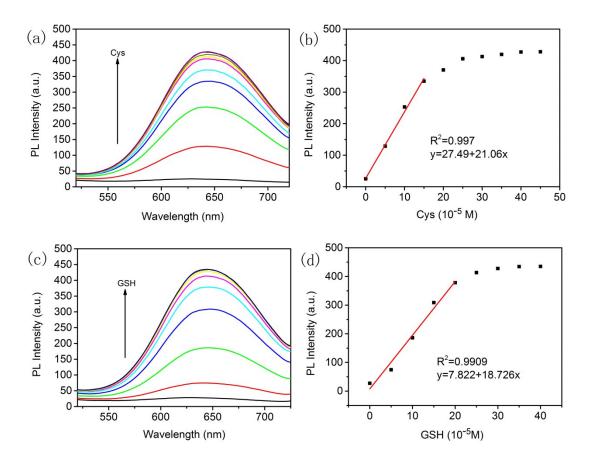




Fig S10. PL intensity of Ir2 (50 μ M) at 643 nm in the presence and absence of Hcy under different pH. λ_{ex} =380 nm.

Fig S11. (a) Absorption spectra of **Ir2** (50 μ M) in presence of Hcy in DMSO/HEPES buffer solution (pH=7.4, 1:1, v/v). (b) Time-dependent PL intensity of **Ir2** at 643 nm in presence of 6 equiv. λ_{ex} = 380 nm.

Fig S12. PL spectra of **Ir2** (50 μ M) upon addition of Cys (a) (0-450 μ M) and GSH (c) (0-400 μ M) in DMSO/HEPES buffer solution (pH=7.4, 1:1, v/v); corresponding plot of PL intensity at 643 nm versus concentration of Cys (b) and GSH (d). λ_{ex} =380 nm.

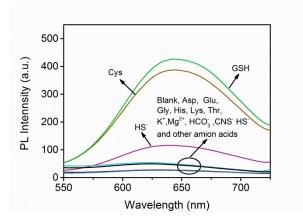


Fig S13. PL response of Ir2 (50 μ M) with various analytes (1 mM) including Asp, Glu, Gly, His, Lys, Thr, Mg²⁺, K⁺, HCO₃²⁻, CNS⁻, HS⁻, Ala, Arg, Phe, Pro, Ser, Trp, Tyr, GSSG, Cys and GSH in DMSO/HEPES buffer solution (pH=7.4, 10mM, 1:1, v/v).

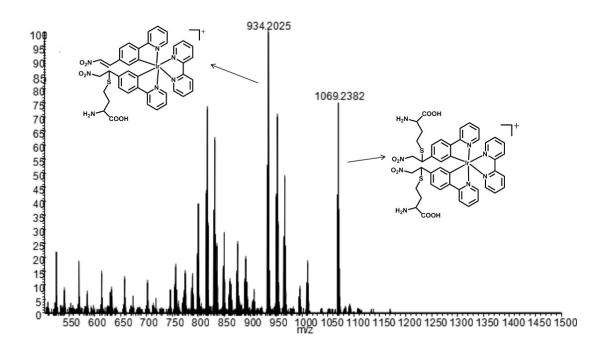
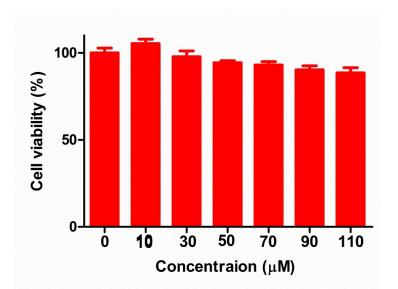



Fig S14. HRMS spectrum of Ir1 ($10\mu M$) in the presence of Cys (5equiv.) for 3 min in the CH₃CN/D₂O solution (1:1, v/v).

Fig S15. MTT result of **Ir2** with HeLa cells. The cytotoxicity of probes was assessed with a 3–(4,5–dimethyl–2–thiazolyl)–2,5–diphenyl–2–H–tetrazolium bromide (MTT) assays towards HeLa cells. The cells were seeded in 96–well plates at about 10000 cells per well in 100 μ L DMEM, and incubated at 37 oC in 5% CO₂ atmosphere for 24 h. After removing culture medium, **Ir2** diluted in DMSO (100 μ L) were added to cell wells with various concentrations of 0, 10, 30, 50, 70, 90 and 110 μ M. The cells were incubated for another 24 h. After the incubation, the culture medium was removed and DMEM (200 μ L) was added into cell wells. Then 20 μ L of 5 mg/mL MTT assays were added to cell wells and cells were incubated for another 4 h, followed by removal of the culture medium containing MTT and addition of 150 μ L of DMSO to each well to dissolve the formazan crystals formed. Finally, the plates were shaken for 5 min. The absorbance of the solution was measured on a Bio–Rad 680 microplate reader at 490 nm. Cell viability (%) was calculated based on the following equation: (Asample/Acontrol) × 100 %, where Asample and Acontrol denote as absorbencies of the sample well and control well, respectively.

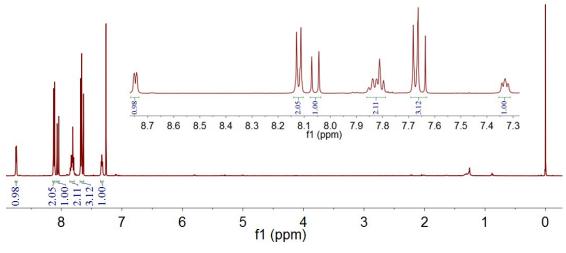


Fig S16. ¹H NMR spectrum of compound 1 in CDCl₃.

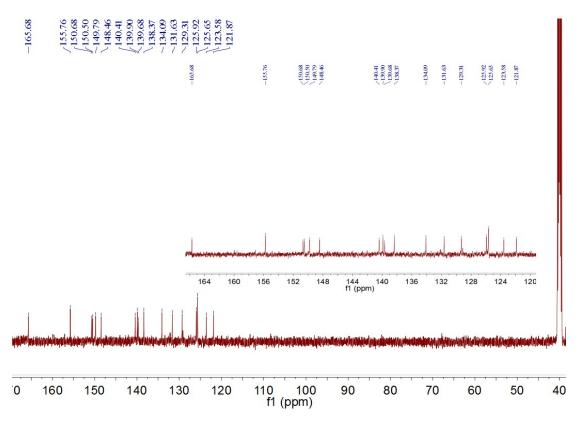


Fig S17. ¹³C NMR spectrum of Ir1 in DMSO.

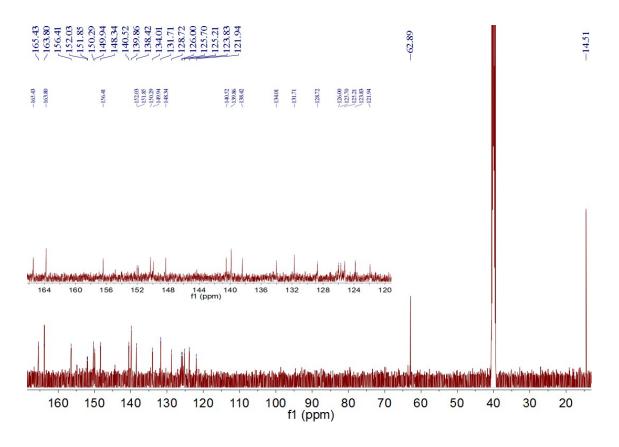


Fig S18. ¹³C NMR spectrum of Ir2 in DMSO-d₆.

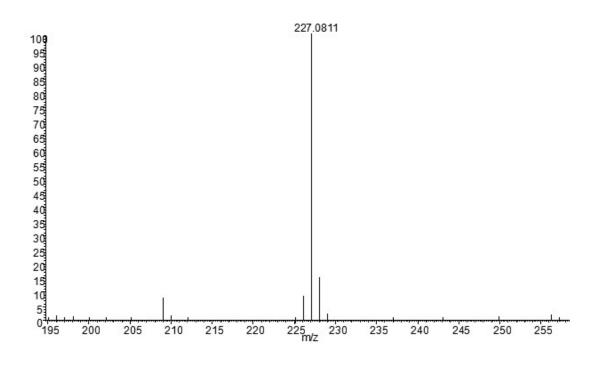


Fig S19. HRMS spectrum of compound 1 in CH₃CN.