Supporting Information

Aggregation Behaviour of Biocompatible Choline Carboxylate Ionic Liquids and their Interactions with Biomolecule through Experimental and Theoretical Investigations

Somenath Panda,^{1[†]} Kaushik Kundu,^{2, 3[†]} Anusha Basaiahgari,¹ Akhil Pratap Singh,^{1,2} Sanjib Senapati,² and Ramesh L. Gardas^{1*}

¹ Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.

² Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.

³ Present address: Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.

⁺ S. P. and K. K have contributed equally to this work.

*Corresponding Authors Information:

E-mail: gardas@iitm.ac.in

Fig. S1. ¹H NMR of choline laurate [Chl][Lau].

Fig. S3. Plot of weight per cent against temperature to illustrate the thermal decomposition of the studied SAILs.

Fig. S4. Optimized molecular structures with NBO charges for binary (**A**) [Chl][Lau]-water and (**B**) [Chl][Pal]-water systems calculated at the MP2/6-311G level of theory.

MP2/6-311G-IEFPCM with water

Fig. S5. Optimized molecular structures for **(A)** [Chl][Lau] and **(B)** [Chl][Pal] calculated using the polarizable continuum model at the MP2/6-311G level of theory.

Fig. S6. Size distribution profiles as a function of concentration of [Chl][Lau] and [Chl][Pal] in water at 303 K.

Fig. S7. Plots for the variation of viscosity (η) versus steady shear rate (γ) as a function of concentration of (**A**) [Chl][Lau] and (**B**) [Chl][Pal] in water at 303 K. Plots for the variation of shear stress (τ) versus steady shear rate (γ) at different concentration of (**C**) [Chl][Lau] and (**D**) [Chl][Pal] in water.

Fig. S8. Comparative plots (**A**) viscosity (η) versus steady shear rate (γ) at 15 wt% and 20 wt% concentration of [Chl][Lau] and [Chl][Pal] in water at 303 K. Comparative plots (**B**) shear stress (τ) versus steady shear rate (γ) at 15 wt% and 20 wt% concentration of [Chl][Lau] and [Chl][Pal] in water at 303 K.

Fig. S9. Variation of the storage modulus (G'), and loss modulus (G") relative to the angular frequency (ω) of micellar systems at 5 wt% to 20 wt% concentration of (**A**) [Chl][Lau] and (**B**) [Chl][Pal] and temperature of 303 K, where open and filled symbols correspond to G' and G", respectively.

Fig. S10. Variation of the complex viscosity ($|\eta^*|$) relative to the angular frequency (ω) of micellar systems at 5 wt% to 20 wt% concentration of **(A)** [Chl][Lau] and **(B)** [Chl][Pal] and temperature of 303 K.

Fig. S11. Comparative variation of the complex viscosity ($|\eta^*|$) aganist angular frequency (ω) of micellar systems at 5 wt% to 20 wt% concentration of (A) [Chl][Lau] and (B) [Chl][Pal] and temperature of 303 K.

Fig. S12. Double-log plots of the **(A)** [Chl][Lau] and **(B)** [Chl][Pal] quenching effect on BSA fluorescence at 303 K.