Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supplementary Material

A conjugated BODIPY-triphenylamine multi-aldoxime: sonogashira coupling,

ratiometric chemodosimeter and rapid detection of hypochlorite with two-

photon excited fluorescence

Chao Xu^a, Ying Qian^{a*}, Zheng-qing Qi^b, Chang-gui Lu^b, Yi-ping Cui^b

^aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China

^bAdvanced Photonic Center, Southeast University, Nanjing 210096, China

*Corresponding author. E-mail: yingqian@seu.edu.cn

1. Synthese of alkynyl substitued triphenylamine M1	\$1
2. Synthesis of iodine substitued BODIPY dye iodo-BODIPY	32
3. ¹ H NMR spectrum of M1	33
4. MS spectrum of M1	4
5. ¹ H NMR spectrum of iodo-BODIPY	\$ 5
6. ¹³ C NMR spectrum of iodo-BODIPY	S 6
7. MS spectrum of iodo-BODIPY	S 7
8. ¹ H NMR spectrum of BTC	S 8
9. ¹³ C NMR spectrum of BTC	S 9
10. ¹ H NMR spectrum of BTN	S10
11. ¹³ C NMR spectrum of BTN	S11
12. MS spectrum of BTN	.S12
13. The DFT calculations of BTN before and after reacting with OCI	.S13
14. The UV-Vis absorption ratio changes with the addition of NaOC1	.S14
15. Effect of pH on the fluorescence intensity of probe in buffered/THF	.S15
16. The fluorescent probes reported for multi-sites toward hypochlorite	.S16

The synthesis of intermediates

Fig S1. Synthese of alkynyl substitued triphenylamine M1.

Compound M1. Copper iodide (5.70 mg, 0.03 mmol), N, N-di(4-formyl benzyl)-4-iodophenylamine (0.63 g, 1.47 mmol), Bis(triphenylphosphine) palladium dichloride (21.06 mg, 0.03mmol) and were placed in 10 mL of dry THF under N₂ for 30 min. Trimethylsilylacetylene (1.25 mL, 8.80 mmol) and triethylamine (10 mL) were added and stirred at ambient overnight under N₂. Then the crude product was purified by silica column chromatography to afford the product N, N-di (4-formylbenzyl)-4-trimethylsilylphenylamine as yellow solid (0.53 g), which (0.20 mg, 0.52 mmol) was placed in 45 mL CH₂Cl₂. Then, 0.62 mL 1 M tetrabutylammonium fluoride in THF was added at 0 °C and the mixture was stirred at 0 °C for 45 min. After removing the solvent, the crude product was purified by silica gel column chromatography to afford the product N, N-di (4-formylbenzyl)-4-acetenylphenylamine (M1) as a dark yellow solid. ¹H NMR (300 MHz, Chloroform-d) δ (ppm): 9.84 (s, 2H), 7.72 (d, 4H, J=9.01), 7.41(d, 2H, J=9.02), 7.12 (d, 4H, J=9.01), 7.03 (m, 2H, J=9.10), 3.06 (s, 1H). MS (m/z): calcd for C₁₂H₁₅NO₂: [M+H]⁺ = 326.1136, found 326.1193.

Fig S2. Synthesis of iodine substitued BODIPY dye iodo-BODIPY. **Compound iodo-BODIPY.** 4-(2-bromoethoxy) benzaldehyde (1.1 g, 5.0 mmol) and 2, 4-dimethylpyrrole (1.0 g, 10.0 mmol) were dissolved in dry CH₂Cl₂ (150 mL). Ten drops of trifluoroacetic acid (TFA) were added, after TLC monitoring

showed complete disappearance of the aldehyde, a solution of tetra-chlorobenzo-quinone (TCQ) (2.5 g, 10.0 mmol) in anhydrous CH₂Cl₂ (50 mL) was added. This mixture was further stirred for 1h, then triethylamine (5.0 mL) and BF₃. OEt₂ (5.0 mL) were subsequently added. This mixture was stirred overnight. The mixture was washed with water and brine, dried over anhydrous Na₂SO₄, and evaporated under vacuum. The crude compound was purified by silica gel column chromatography to give a red powder as the pure BODIPY (50 %). M2 (447.0 mg, 1.0 mmol) and iodine (320.0 g, 2.5 mmol) in EtOH (40 mL). Iodic acid (352.0 mg, 2.0 mmol) was dissolved in 1 mL water and added dropwise over 20 min to the solution. This mixture was stirred at 60 °C for 30 min. After cooling, the mixture was evaporated under vacuum. The crude product was purified by silica gel column chromatography from ethyl acetate and n-hexane to afford a purple compound as pure iodo-BODIPY (86 %). ¹H NMR (500 MHz, Chloroform-d) δ (ppm): 7.17 (d, 2H, J = 10.11), 7.06 (d, 2H, J = 5.04), 4.37 (t, 2H, J = 6.20 Hz), 3.69 (t, 2H, J = 6.21 Hz), 2.64 (s, 6H), 1.44 (s, 5.04), 1.44 (s, 5.04) 6H). ¹³C NMR (126 MHz, C Chloroform-d) δ (ppm): 159.15, 156.75, 145.31, 141.22, 131.70, 129.33, 127.58, 115.66, 85.61, 68.04, 28.70, 17.20, 16.02. MS (m/z): calcd for C₂₁H₂₀BBrF₂I₂N₂O: $[M+H]^+= 696.8931$, found: 696.8958.

¹H NMR, ¹³C NMR and HRMS Spectra

Fig S3. ¹H NMR spectrum (CDCl₃, 300 MHz) of M1.

Fig S4. MS spectrum of M1.

Fig S5. ¹H NMR spectrum (CDCl₃, 500 MHz) of iodo-BODIPY.

Fig S7. MS spectrum of iodo-BODIPY.

Fig S9. ¹³C NMR spectrum (CDCl₃, 125 MHz) of BTC.

Fig S10. ¹H NMR spectrum (CDCl₃ + DMSO- d_6 , 500 MHz) of BTN.

Fig S12. MS spectrum of BTN.

DFT calculations of BTN before reacting with OCl-

DFT calculations of BTN after reacting with OCI-

Figure S13 The DFT calculations of BTN based on B3LYP/6-31G(d) basis set before and after reacting with OCl⁻.

Fig S14. The UV-Vis absorption ratio (A_{640} / A_{360}) changes with the addition of NaOCl (50-100µM). Condition: [BTN] =10 µM, PBS (10 m M, pH = 7.4): THF (1/1 , v/v), λ_{ex} =380 nm (slit: 5 nm).

Fig S15. Effect of pH on the fluorescence intensity of probe (10 μ M) in buffered/THF (1/1, v/v, pH= 2.0~10.0, 10 mM). Fluorescence responses are shown before (a) and after (b) addition of NaOCl (50 μ M) at 440 nm and 660 nm, respectively, after incubation of NaOCl for 30 min. $\lambda_{ex} = 380$ nm.

Compounds	References	Recognition sites	λ _{max-em}	LOD	Signal representation
HO-N FFF compound 1	Dyes and Pigments, 2017 , 136, 852-858.	2	589 nm	0.85 μM	ratiometric
CI + CI + O + OH $Se = Se + CI + O + OH$ $CI + CI + O + OH$ $CI + O + OH + OH$ $CI + O + OH + OH$ $CI + O + OH + OH$ $CI + O + OH$	Sensors and Actuators B: Chemical, 2017, 244, 307-313.	2	519 nm	0.039 µM	Single fluorescence intensity
H_2N NC NC NC NC NC NC NC N	Sensors and Actuators B: Chemical 2014, 204, 741-745.	2	447 nm	3.3 µM	Single fluorescence intensity
HO + O + O + OH $HO + O + OH$ $HO + O + OH$ $Compound 4 HO + O + OH$	Sensors and Actuators B: Chemical 2014, 202, 656-662.	2	524 nm	5.0 μΜ	Single fluorescence intensity
BTN	this work	4	670 nm	4.9 µM	ratiometric

Fig S16. The fluorescent probes reported for multi-sites toward hypochlorite