Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting information

Redox/Ultrasound Dual Stimuli-Responsive Nanogels for Precisely Controllable Drug Release

Nengwei Shen, Bin Lei, Yizhou Wang, Shouhong Xu*, Honglai Liu*

Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.

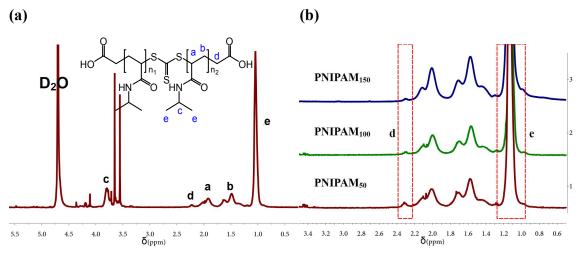


Fig. S1 ¹H NMR of HOOC-PNIPAM_n-COOH polymers.

A series of HOOC-PNIPAM_n-COOH polymers were synthesized via the reversible addition-fragmentation chain transfer (RAFT) polymerization and the chemical structure was confirmed by ¹H NMR spectroscopy. In the ¹H NMR spectra of HOOC-PNIPAM-COOH polymers (Fig. S1a), the chemical shifts at ~1.92 ppm (**a**) and ~1.49 ppm (**b**) were assigned to methine (-CH) and methylene (-CH₂) in repeat units, respectively. The chemical shift at ~3.80 ppm (**c**) was assigned to methine (-CH) link to amido. The chemical shift at ~2.22 ppm (**d**) was assigned to methylene (-CH₂) link to carbonyl group. The chemical shift at ~1.14 ppm (**e**) was assigned to symmetrical two methyls (-CH₃). The molecular weights (Mn) of the PNIPAM were calculated from the ratio of these two integrals and shown in Table S1.

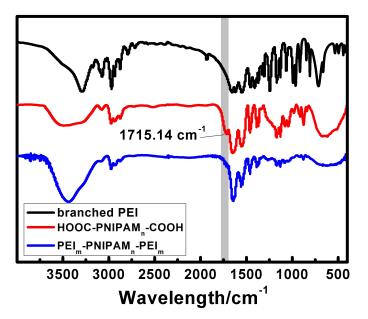


Fig. S2 FTIR spectra of PEI, HOOC-PNIPAM_n-COOH and PEI_m-PNIPAM_n-PEI_m.

The process of conjugation between HOOC-PNIPAM_n-COOH and PEI was monitored by FTIR analysis (Fig. S2). The polymerization process was monitored by the FTIR spectrum, which showed a peak at 1715 cm⁻¹ corresponding to the carboxyl groups of the HOOC-PNIPAM_n-COOH. And then the observed bond of the carboxyl group disappeared after conjugating PEI, determining successful synthesis of copolymer.

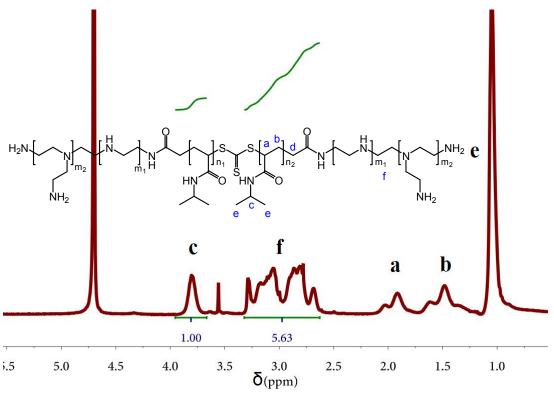


Fig. S3 ¹H NMR of PEI₄₂-PNIPAM₁₀₀-PEI₄₂ copolymer.

In the ¹H-NMR of PEI₄₂-PNIPAM₁₀₀-PEI₄₂ (Fig. S3), the chemical shifts at ~1.92 ppm (a) and ~1.49 ppm (b) were assigned to methine (-CH) and methylene (-CH₂) in repeating units of PNIPAM, respectively. The peak at ~3.80 ppm (c) was assigned to methine (-CH) link to amido group of PNIPAM and the signals at 2.60~3.30 ppm (f) were attributed to the methylene group in PEI. We have calculated the n values of PNIPAM block from Fig. S1b and the ratio of PNIPAM: PEI was 62: 86.8, it indicated that 1 molar PNIPAM had been connected with 2.1 molar PEI. The molecular weights (Mn) of the polymers calculated from the ratio of these two integrals were shown in Table S1.[1-3]

Smaple	NIPAM/CTA (or PNIPAM/PEI)		M _{HNMR} ^a	Mgpc ^b	PD ^b
	In feed (mol/mol)	Observed(mol/mol) ^a	− (g·mol ⁻¹)	(g·mol⁻¹)	
PNIPAM ₅₀ ^c	50/1	36/1	4113	3653	1.43
PNIPAM ₁₀₀	100/1	62/1	7051	9505	1.37
PNIPAM ₁₅₀	150/1	107/1	12114	16975	1.44
PEI14-PNIPAM100-PEI14	1/3	1/2.2	8349	-	-
PEI42-PNIPAM100-PEI42	1/3	1/2.1	10801	-	-
PEI232-PNIPAM100-PEI232	1/3	1/2.0	27029		-
PEI42-PNIPAM50-PEI42	1/3	1/2.0	7708	-	-
PEI42-PNIPAM150-PEI42	1/3	1/2.0	15803	-	-

Table S1 Properties of polymers.

^a Determined by ¹H NMR spectroscopy.

^b Measured by GPC using DMF as eluent on the basis of polystyrene calibration curve.

^c The *n* (50, 100 and 150) was denoted as the theoretical number of monomers.

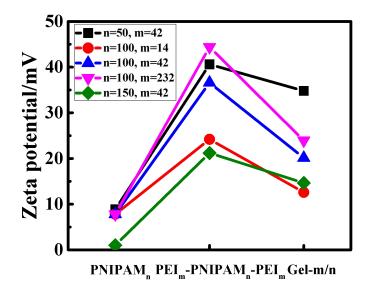


Fig. S4 Zeta potentials of polymers, copolymers and nanogels in aqueous solutions.

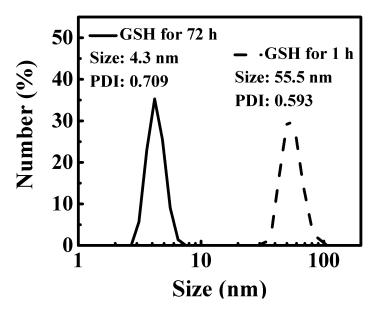


Fig. S5 Reduction-triggered size distribution changes of Gel-42/100 with time. Dashed line: 1hr; Solid line: 72 hrs.

References

- 1. Z. X. Lu, L. T. Liu and X. R. Qi, International journal of nanomedicine, 2011, 6, 1661-1673.
- J. Yang, P. Zhang, L. Tang, P. Sun, W. Liu, P. Sun, A. Zuo and D. Liang, *Biomaterials*, 2010, 31, 144-155.
- 3. Ş. K. D, T. Gulinsarfraz, G. Hedström, A. Duchanoy, P. Eklund and J. M. Rosenholm,

Journal of Colloid & Interface Science, 2014, 418, 300-310.