Supporting information

Carbon Black /Silicon Nitride Nanocomposites as High-Efficiency Counter Electrodes for Dye-Sensitized Solar Cells

Abdelaal. S. A. Ahmed^{1, 2}, Wanchun Xiang^{1*}, Anna Gu¹, Xiaowei Hu¹, Ibrahim Saana Amiinu³, Xiujian Zhao^{1*}

¹ State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Luoshi Road, Wuhan 430070, P. R. China

² Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
³ State Key Laboratory of Advanced Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road, Wuhan 430070, P. R. China

*Corresponding authors:

Email address: xiangwanchun@whut.edu.cn (W. Xiang) and opluse@whut.edu.cn (X. Zhao).

Scheme 1. CB-Si $_3N_4$ composite CE for Triiodide Reduction

Fig. S1 Cross-section image of Pt CE.

Fig. S2 (a) Nyquist plot of the CB-Si₃N₄-3% with 1.4 μ m thickness and (b and C) Equivalent circuits used for fitting the electrochemical parameters for Pt and CB-Si₃N₄ dummy cells respectively.

Table S1 Corresponding parameters	of CV, Bod	e EIS, and	Tafel of CB,	Si_3N_4 and	CB-Si ₃ N ₄ -x
based CEs and the corresponding DSS	SCs				

СЕ	I _{PC}	E _{pp}	R _s	R _{ct}	CPE-T	W_1	W ₂	Log J ₀	Log J _{lim}	R _{ct} Tafel
	(mAcm ⁻²)	(V)	(Ω)	(Ω)	(µF)	(Ω)	(Ω)	(mA cm ⁻²)	(mA cm ⁻²)	(Ω)
Bare CB	-0.14	620	8.73	18.10	6.75	92.77	110.60	0.28	23.44	32.22
$CB\text{-}Si_3N_4\text{-}1\%$	-0.69	600	7.21	4.25	14.20	37.70	68.55	0.51	45.71	1.89
$CB\text{-}Si_3N_4\text{-}3\%$	-1.30	560	7.42	2.34	21.98	21.16	29.62	0.87	60.26	0.83
$CB\text{-}Si_3N_4\text{-}5\%$	-1.15	560	9.86	2.48	28.30	43.95	55.11	0.08	14.45	5.10

 I_{PC} is the cathodic current density, R_{ct} is the charge transfer resistance at the cathode- electrolyte interface, R_s is the series resistance, CPE-T is the capacitance at the cathode-electrolyte interface; W_1 , mass transport impedance, W_2 is the Nernst diffusion impedance of the redox couple (I_3^-/I^-) , E_{pp} is the peak –peak separation of cyclic voltamogram, J_0 the exchange current density; J_{lim} the limiting diffusion current density.

СЕ	I _{PC}	E _{pp}	R _s	R _{ct}	CPE-T	W_1	W ₂	Log J ₀	$Log \; J_{lim}$	R _{ct} Tafel
Thickness	(mAcm ⁻²)	(mV)	(Ω)	(Ω)	(µF)	(Ω)	(Ω)	(mAcm ⁻²)	(mAcm ⁻²)	(Ω)
1.4µm	-0.33	640	9.08	53.52	14.40	1580	2817	-1.45	-0.07	172.45
2.4µm	-0.41	620	7.96	2.62	17.95	68.69	107.30	-0.49	0.66	18.89
4.7µm	-1.30	560	7.42	2.34	21.98	21.16	29.62	0.87	1.78	0.83
9.4µm	-1.35	500	9.07	2.26	31.85	15.49	20.75	1.20	1.98	0.39
14.1µm	-1.60	620	8.85	0.85	38.60	06.06	07.33	1.30	2.12	0.31
Pt (0.58 μm)	-1.93	320	6.28	3.19	47.76		02.03	1.50	33.11	0.12

Table S2 Corresponding parameters of CV, Bode EIS, and Tafel of Pt and CB-Si $_3N_4$ -3% CEs with different thickness and the corresponding DSSCs