Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplymentary Information

(ESI)

g-C₃N₄ supported metal (Pd, Ag, Pt) catalysts for hydrogen-

production from formic acid

Xiaotong Liu^a, Penghe Su^a, Ya Chen^a, Baolin Zhu^{a,c}, Shoumin Zhang^{a,c}, Weiping Huang^{a,b,c*}

^a College of Chemistry, Nankai University, Tianjin 300071, China;

^b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China;

^c The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China

S I. Raman spectra

Figure S1. Raman spectrum of g-C₃N₄ (532nm laser source)

Figure S2. Raman spectrum of HTNTs (532nm laser source)

Pd/HTNTs

Figure S3. Raman spectrum of Pd/HTNTs (532nm laser source)

S II. Metal content

Sample	Contents (%)		
	Pd	Pt	Ag
Pd/g-C ₃ N ₄	1.08	—	—
$Pt/g-C_3N_4$	_	0.66	—
Pt-Pd/g-C ₃ N ₄	1.03	0.51	—
Ag/g-C ₃ N ₄	_	_	0.39
$Ag-Pd/g-C_3N_4$	1.01	—	0.59
Pd/HTNTs	0.93	—	
Pt-Pd /HTNTs	0.91	1.28	—
Ag-Pd /HTNTs	0.97	_	0.59

Table S1. Metal contents of catalysts after catalytic reaction.

S III. XPS spectra

The Pd 3d spectra exhibits two contributions. Major part is Pd⁰, located at 334.4-335.35 eV ($3d_{5/2}$) and 339.6-340.6 eV ($3d_{3/2}$), which can be assigned to be Pd NPs. And minor part is Pd²⁺, located at 336.35-338.15 eV ($3d_{5/2}$)^{1,2} and 341.75-343.30 eV ($3d_{3/2}$)³, which has no catalytic activity.

 $Pd/g-C_3N_4$

Figure S4. XPS spectrum of Pd 3d peaks of Pd/g-C₃N₄

Figure S5. XPS spectrum of Pd 3d peaks of Pt-Pd/g-C₃N₄

Figure S6. XPS spectrum of Pd 3d peaks of Ag-Pd/g-C_3N_4 \$Pd/HTNTs\$

Figure S7. XPS spectrum of Pd 3d peaks of Pd/HTNTs

S IV. TEM images

Figure S8. TEM images of Pd/g-C₃N₄

Figure S9. TEM images of Pt-Pd/g-C₃N₄

Figure S10. TEM images of Ag-Pd/g-C₃N₄

Figure S11. TEM image of Pd/HTNTs

Figure S12. TEM image of Pd/g-C₃N₄ (After catalytic reaction)

Figure S13. TEM image of Pd/HTNTs (After catalytic reaction)

Figure S14. TEM image of Pt-Pd/HTNTs (After catalytic reaction)

Figure S15. TEM image of Ag-Pd/HTNTs (After catalytic reaction)

S V. Statistics researches of the size range of metal NPs

Chart S1. Statistics researches of the size range of metal NPs in Pd/g-C₃N₄ (a), Pd/HTNTs (b) and Pt-Pd/g-C₃N₄ (c)

S VI Kinetic curves

Figure S16. Gas generation of catalysts in first 2 h.

Figure S17. TOF of catalysts in first 2 h.

S VI. Result of GC

Because the reaction system is SF: FA=9:1, in such alkaline condition, CO₂ turns into HCO₃-

Figure S18. GC results of Pd/g-C₃N₄ and Pt-Pd/g-C₃N₄

Notes and references

- 1
- Noack, K.; Zbinden, H. and Schlogl, R. *Catal. Lett.* 1990, **4**, 145. Kumar, G.; Blackburn, J.R.; Albridge, R.G.; Moddeman, W.E. and Jones, M.M. *Inorg. Chem.* 1972, **11**, 2 296.
- 3 Tressaud. A.; Khairoun, S.; Touhara, H. and Watanabe, N. Z. Anorg. Allg. Chem. 1986, 540, 291.