Electronic Supplementary Information

Cyanine dyes: Synergistic action of hydrogen, halogen and chalcogen bonds allows discrete $\mathrm{I}_{4}{ }^{2-}$ anions in crystals
Konstantis F. Konidaris, ${ }^{a}$ Tullio Pilati, ${ }^{a}$ Giancarlo Terraneo, ${ }^{a}$ Peter Politzer, ${ }^{b}$ Jane S. Murray, ${ }^{\text {b }}$ Patrick Scilabra ${ }^{\text {a }}$ and Giuseppe Resnati*a

[^0]Page

1. Materials and Methods 3
2. Single crystal structure determination 4
Table S1 4
Figure S1 6
Figure S2 9
Figure S3 10
3. Cambridge Structural Database statistics 11
Scheme S1 11
Scheme S2 12
Scheme S3 13
Scheme S4 13
4. Molecular electrostatic potential 14
Figure S4 14
5. References 15

1. Materials and Methods

1.1. General information

The starting materials 1-ethyl-6-methyl-2-[(E)-(3-ethyl-5-methoxy-2(3H)benzoselenazolylidene)methyl]quinolinium p-toluenesulfonate (1a) and 1-ethyl-6-methoxy-2-[(E)-(3-ethyl-5-methoxy-2(3H)-benzoselenazolylidene)methyl]quinolinium iodide (1b) were purchased from Sigma-Aldrich (product codes S137928 and S131105, respectively) and used without further purification. IR spectra were obtained using a Nicolet Nexus FT-IR spectrometer equipped with UATR unit ($4000-400 \mathrm{~cm}^{-1}$ range). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded at ambient temperature on a Bruker AV-400 spectrometer, at 400 MHz .

1.2. 1-Ethyl-6-methyl-2-[(E)-(3-ethyl-5-methoxy-2(3H)-benzoselenazolylidene)methyl]quinolinium p-toluenesulfonate (1a)

Orange plate-like crystals of $\mathbf{1 a}$ were formed on slow isothermal evaporation at room temperature of a solution of the compound in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. FT-IR ($v \mathrm{~cm}^{-1}$): 2974, 2919, 1614, 1567, 1529, 1391, 1264, 1213, 1164, 1119, 1033, 1011, 798, 680, 563.

1.3. 1-Ethyl-6-methoxy-2-[(E)-(3-ethyl-5-methoxy-2(3H)-benzoselenazolylidene)methyl]quinolinium iodide (1b)

Red thin needle-like crystals of $\mathbf{1 b}$ were formed on slow isothermal evaporation at room temperature of a solution of the compound in $\mathrm{CHCl}_{3} / \mathrm{MeOH}(4: 1)$. FT-IR ($v, \mathrm{~cm}^{-1}$): 2962, 2934, 1611, 1568, 1515, 1479, 1373, 1257, 1215, 1156, 1030, 787, 698, 442. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, DMSO- $\left.\mathrm{d}_{6}, \delta(\mathrm{ppm})\right): 1.38(\mathrm{t}, 3 \mathrm{H}), 1.49(\mathrm{t}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 4.48(\mathrm{q}, 2 \mathrm{H}), 4.71(\mathrm{q}, 2 \mathrm{H})$, $6.23(\mathrm{~s}, 1 \mathrm{H}), 6.95-6.97(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{~d}, 1 \mathrm{H}), 8.03,(\mathrm{~d}, 1 \mathrm{H}), 8.13$ (d, 1H), 8.47 (d, 1H).

[^1]
2. Single crystal structure determination

2.1. General information

The single crystal X-ray diffraction measurement of 1a and 1c were conducted with a Bruker SMART APEX CCD area detector diffractometer, equipped with a Bruker KRYOFLEX low temperature device, graphite monochromator, MoKa radiation ($\lambda=0.71069 \AA \AA$). Cell refinement and data reduction were done with Bruker SAINT [1]. Structure solution was performed with SHELXS [2] and refined with SHELX [2]; absorption correction was performed based on multi-scan procedure using SADABS [1]. Further crystallographic details of the structures are reported in Table S1.

Table S1. Crystallographic data and structure refinement parameters for 1a-c.

Compound	1a	1b	1c
Formula	$2\left(\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{OSe}\right) \cdot 2($ $\left.\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{~S}\right) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Se}^{+} \cdot I^{-}$	
Molecular weight	1276.11	567.31	$\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Se}^{+} \cdot 0.5(\mathrm{I}$ $2) \cdot I^{-}$
Temperature (K)	100	296	694.21
Crystal system	Triclinic	Monoclinic	Triclinic
Space group	$P \overline{1}$	$P 2_{1} / n$	$P \overline{1}$
$a(\AA)$	$8.008(7)$	$8.0417(19)$	$7.634(6)$
$b(\AA)$	$11.380(9)$	$14.332(4)$	$11.179(11)$
$c(\AA)$	$17.301(13)$	$19.473(5)$	$15.757(13)$
$\alpha\left({ }^{\circ}\right)$	$74.32(3)$	90	$75.93(6)$
$\beta\left({ }^{\circ}\right)$	$86.43(2)$	$90.228(11)$	$79.26(5)$
$\gamma\left({ }^{\circ}\right)$	$70.07(2)$	90	$70.09(4)$
Volume $\left(\AA^{3}\right)$	$1426(2)$	$2244.4(10)$	$1218.4(19)$
Z	1	4	2
Crystal size (mm)	$0.1 \times 0.08 \times 0.02$	$0.25 \times 0.02 \times 0.02$	$0.1 \times 0.08 \times 0.01$
$\left.\mu(m)^{-1}\right)$	1.52	3.07	4.10
$\mathrm{~F}(000)$	658	1120	666
No. of measured, independent and observed reflections	$12265,3916,2468$	$53785,2374,1599$	$8747,4221,2348$

$\theta_{\min ,} \theta_{\max }\left({ }^{\circ}\right)$	$3.7,23.1$	$2.9,21.01$	$3.01,25.00$
$w R_{\text {2_obs }}, w R_{\text {2_all }}$	$0.143,0.118$	$0.153,0.131$	$0.098,0.117$
$R_{1 _ \text {obs }}, R_{1 \text { _all }}$	$0.060,0.120$	$0.063,0.111$	$0.049,0.104$
GOOF	1.009	1.118	0.908
$\Delta \rho_{\min }, \Delta \rho_{\max }\left(\mathrm{e} \AA^{-3}\right)$	$-0.68,0.59$	$-0.86,0.99$	$-0.95,0.87$
CCDC number	1817362	n.d. ${ }^{\text {a }}$	1817361

a: The structure 1b diffracted very poorly and several attempts to improve the quality of the data failed (Data completeness 0.979 with theta max of 21° and Rint of 0.360). For this reason the structure 1 b was not deposited (n.d.) in the CSD. However all heavy atoms were properly located and, for the sake of clarity, the Cartesian coordinate and the ADPs are listed in paragraph 2.2 in shelx res file format.

Figure S1
Partial representation (Mercury 3.9) of the crystal packing of 1c evidencing how $\mathrm{I}_{4}{ }^{2}$ supramolecular anions are discrete units sitting in a cavity delimited by cations. An orientation different from that adopted in Fig. 4 is used. One $\mathrm{I}_{4}{ }^{2-}$ anion is in space filling style (with reduced atom size representation with respect to standard space filling); the two $\mathrm{I}_{4}{ }^{2-}$ anions closest to the central $\mathrm{I}_{4}{ }^{2-}$ are also reported (in ball and stick). Depth cueing makes atoms at the front darker than those at the back. XBs are purple lines. Colour code for atoms: Grey, carbon; white, hydrogen; sky blue, nitrogen; red, oxygen; ochre, selenium; purple, iodine.

2.2. Crystal structure of 1b

The poor quality of diffraction data obtained for $\mathbf{1 b}$ crystals substantially lessens the value of an analyses of the details of the structure. Similar to $\mathbf{1 a}$ and 1c, the benzoselenazole and quinoline moieties are nearly coplanar (the angle between the mean square planes through the heavy atoms of the two bicyclic systems is 5.86°). The cations adopt a smectic-like organization and form layers which alternate with anionic layers (Fig. S2). Iodide anions are pinned to cations via HBs.

Cartesian coordinate and ADPs of 1b in shelx res file format:

TITL T3 in P2(1)/n 1B.res
CELL 0.710738 .041714 .332419 .473290 .00090 .22890 .000
$\begin{array}{llllllll}\text { ZERR } & 4.00 & 0.0019 & 0.0036 & 0.0049 & 0.000 & 0.011 & 0.000\end{array}$
LATT 1
SYMM 0.5-X, 0.5+Y, 0.5-Z
MOLE 1
$\begin{array}{llllllll}11 & 6 & 0.641955 & 0.762300 & 0.276361 & 11.00000 & 0.07473 & 0.07934=\end{array}$ $\begin{array}{llll}0.05361 & 0.00238 & -0.00752 & -0.00615\end{array}$
$\begin{array}{llllllll}\text { Se1 } & 5 & 0.384009 & 0.133882 & 0.546477 & 11.00000 & 0.04328 & 0.04359=\end{array}$ $\begin{array}{llll}0.04962 & -0.00241 & -0.00205 & -0.00807\end{array}$
$\begin{array}{llllllll}\text { C1 } & 1 & 0.473243 & 0.242441 & 0.508344 & 11.00000 & 0.04366 & 0.03864=\end{array}$ $\begin{array}{llll}0.03975 & -0.00703 & 0.00225 & 0.00837\end{array}$
$\begin{array}{llllllll}C 2 & 1 & 0.551231 & 0.317474 & 0.541178 & 11.00000 & 0.04672 & 0.05409=\end{array}$ $\begin{array}{lllll}0.05550 & -0.01802 & 0.00268 & -0.00770\end{array}$
$\begin{array}{llllllll}C 3 & 1 & 0.607620 & 0.390511 & 0.502791 & 11.00000 & 0.03862 & 0.04157=\end{array}$ $0.06640-0.01495 \quad 0.00820-0.02300$
$\begin{array}{llllllll}C 4 & 1 & 0.588813 & 0.391160 & 0.432152 & 11.00000 & 0.04581 & 0.04110=\end{array}$ $\begin{array}{lllll}0.06523 & -0.00032 & 0.00432 & -0.01167\end{array}$
$\begin{array}{llllllll}C 5 & 1 & 0.510634 & 0.320360 & 0.399717 & 11.00000 & 0.04907 & 0.04493=\end{array}$ $\begin{array}{lllll}0.05694 & 0.01784 & -0.00490 & -0.01683\end{array}$
$\begin{array}{llllllll}C 6 & 1 & 0.455987 & 0.247143 & 0.438761 & 11.00000 & 0.03398 & 0.02912=\end{array}$ $\begin{array}{llll}0.06495 & -0.00975 & 0.00675 & -0.00364\end{array}$
$\begin{array}{llllllll}C 7 & 1 & 0.322391 & 0.097225 & 0.456236 & 11.00000 & 0.04805 & 0.05338=\end{array}$ $\begin{array}{llll}0.03488 & 0.01420 & 0.01513 & 0.01515\end{array}$
$\begin{array}{llllllll}\mathrm{N} 1 & 3 & 0.367119 & 0.167060 & 0.412215 & 11.00000 & 0.07322 & 0.06626=\end{array}$ $\begin{array}{llll}0.02645 & -0.00197 & -0.00723 & -0.00555\end{array}$
$\begin{array}{llllllll}C 8 & 1 & 0.241522 & 0.018148 & 0.434542 & 11.00000 & 0.05080 & 0.03463=\end{array}$ $\begin{array}{lllll}0.05168 & -0.01683 & -0.00824 & -0.00783\end{array}$
$\begin{array}{llllllll}C 9 & 1 & 0.184051 & -0.058130 & 0.473384 & 11.00000 & 0.03137 & 0.03806=\end{array}$ $\begin{array}{llll}0.04632 & 0.00407 & 0.00199 & -0.00131\end{array}$
$\begin{array}{llllllll}\text { C10 } & 1 & 0.214272 & -0.071350 & 0.543710 & 11.00000 & 0.03638 & 0.04512=\end{array}$ $\begin{array}{llll}0.04285 & -0.00389 & -0.00028 & -0.01240\end{array}$
$\begin{array}{llllllll}C 11 & 1 & 0.162985 & -0.145599 & 0.578967 & 11.00000 & 0.05590 & 0.04022=\end{array}$ $\begin{array}{llll}0.03779 & -0.00300 & -0.01158 & -0.01257\end{array}$
$\begin{array}{llllllll}C 12 & 1 & 0.073755 & -0.218108 & 0.544165 & 11.00000 & 0.01699 & 0.04443=\end{array}$ $\begin{array}{llll}0.05355 & -0.00784 & 0.00447 & -0.00038\end{array}$
$\begin{array}{llllllll}C 13 & 1 & 0.023730 & -0.298479 & 0.578178 & 11.00000 & 0.05366 & 0.03932=\end{array}$ $\begin{array}{lllll}0.04553 & 0.00406 & 0.00077 & -0.01172\end{array}$
$\begin{array}{llllllll}\text { C14 } & 1 & -0.062273 & -0.366747 & 0.542213 & 11.00000 & 0.03683 & 0.03830=\end{array}$ $\begin{array}{llll}0.06210 & 0.00328 & 0.00280 & -0.00122\end{array}$
$\begin{array}{llllllll}\text { C15 } & 1 & -0.091093 & -0.355831 & 0.472484 & 11.00000 & 0.03027 & 0.03593=\end{array}$ $\begin{array}{llll}0.07295 & -0.00697 & -0.01094 & -0.00053\end{array}$
$\begin{array}{llllllll}\text { C16 } & 1 & -0.040574 & -0.278314 & 0.437583 & 11.00000 & 0.05636 & 0.03023=\end{array}$ $\begin{array}{llll}0.05786 & -0.00005 & -0.01171 & -0.00533\end{array}$
$\begin{array}{llllllll}\text { C17 } & 1 & 0.040692 & -0.207181 & 0.473257 & 11.00000 & 0.03315 & 0.02585=\end{array}$ $\begin{array}{llll}0.04608 & -0.00159 & -0.00182 & -0.00210\end{array}$
$\begin{array}{llllllll}\mathrm{N} 2 & 3 & 0.092938 & -0.126421 & 0.440693 & 11.00000 & 0.05310 & 0.03233=\end{array}$ $\begin{array}{lllll}0.04076 & -0.00385 & -0.00282 & -0.00338\end{array}$
$\begin{array}{llllllll}\text { O1 } & 4 & 0.652420 & 0.468173 & 0.401188 & 11.00000 & 0.07285 & 0.04834=\end{array}$ $\begin{array}{llll}0.07243 & -0.00254 & -0.00087 & -0.01498\end{array}$
$\begin{array}{llllllll}C 18 & 1 & 0.608732 & 0.482286 & 0.331298 & 11.00000 & 0.11046 & 0.04803=\end{array}$ $\begin{array}{lllll}0.09165 & 0.02446 & 0.00003 & -0.02211\end{array}$
$\begin{array}{llllllll}C 19 & 1 & 0.307221 & 0.168196 & 0.337463 & 11.00000 & 0.13011 & 0.04089=\end{array}$ $\begin{array}{lllll}0.10813 & 0.00831 & 0.02868 & -0.02038\end{array}$
$\begin{array}{llllllll}\text { C20 } & 1 & 0.428408 & 0.118416 & 0.297883 & 11.00000 & 0.13418 & 0.11730=\end{array}$ $\begin{array}{llll}0.10580 & 0.00400 & 0.00482 & -0.02665\end{array}$
$\begin{array}{llllllll}C 21 & 1 & 0.041988 & -0.111797 & 0.367875 & 11.00000 & 0.05797 & 0.04524=\end{array}$ $\begin{array}{llll}0.05656 & -0.00633 & -0.00239 & -0.01306\end{array}$
$\begin{array}{llllllll}\text { O2 } & 4 & -0.120270 & -0.447041 & 0.571259 & 11.00000 & 0.06668 & 0.04551=\end{array}$ $\begin{array}{llll}0.06901 & 0.01038 & -0.00723 & -0.02010\end{array}$
$\begin{array}{llllllll}C 22 & 1 & 0.164485 & -0.148951 & 0.319070 & 11.00000 & 0.08644 & 0.07689=\end{array}$ $\begin{array}{llll}0.06375 & -0.01101 & 0.01139 & -0.00222\end{array}$
$\begin{array}{llllllll}\text { C23 } & 1 & -0.094472 & -0.462192 & 0.640795 & 11.00000 & 0.09057 & 0.07584=\end{array}$ $\begin{array}{llll}0.06037 & 0.01642 & 0.00992 & -0.02364\end{array}$
HKLF 4
END

Figure $\mathbf{S 2}$
Ball and stick partial representation (Mercury 3.9) of the crystal packing of 1b evidencing the segregation and layers formation. Cations are in red; iodide anions are in blue. HBs are black dotted lines.

Figure S3
Ball and stick representation (Mercury 3.9) of piperazine-1,4-diium bis-iodide-liodine (Refcode MOYLUJ01, left, [3]) and 1-methylpyrazin-1-ium iodide/iodine ${ }_{0.5}$ (Refcode YUSYUH, right, [4]) evidencing the $|\cdots|^{-}$XBs (red dotted lines) and $\mathrm{C}-\mathrm{H}_{\cdots} \cdots \mathrm{HBs}$ (black dotted lines) that hold the iodine molecules in their position.

3. Cambridge Structural Database statistics

Scheme S1

A search in the Cambridge Structural Database (CSD) (ConQuest 1.19, CSD version 5.38, updates November 2016, February 2017, May 2017) afforded 17 hits for the bond pattern reported in formula S2a. Eight of the hits (Refcodes: DAQYEZ, DECYNI, DEPICY, KEVLED, NABVOB, PEZJUB, PUDMIK, XEVSAU) were not uniquely related to the bond pattern of formula S2a (e.g. they corresponded to one of the likely resonance structures of the compound). The mean value of the ylidene bond length ($\mathrm{C}=\mathrm{C}$ bond) in the remaining nine hits (Refcodes: HOHVUV, LULPUD, LULQAK, MEZFUU, PMTPYQ, SAKHIX, OYEMUC, OYENAJ, OYENEN) is given in formula S2a. The respective bond length is 139.2 pm in $\mathbf{1 a}$ and 141.0 pm in $\mathbf{1 c}$.

A CSD search afforded a smaller set of hits (16 hits) for the bond pattern reported in formula S2b. Seven of them (Refcodes: DAQYEZ, DECYNI, DEPICY, NABVOB, PEZJUB, PUDMIK, XEVSAU) were not uniquely related to the bond pattern of formula S2b (e.g. they corresponded to one of the likely resonance structures of the compound). The mean values of the two ylidene bond lengths ($\mathrm{C}=\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ bonds) in the remaining nine hits (Refcodes: HOHVUV, LULPUD, LULQAK, MEZFUU, PMTPYQ, SAKHIX, OYEMUC, OYENAJ, OYENEN) are given in formula S2b. The respective bond lengths are $139.2\left(\mathrm{~N}_{\text {quinoline }}-\mathrm{C}-\mathrm{C}\right)$ and 139.3 (Se-C-C) pm in 1a and 141.0 ($\mathrm{N}_{\text {quinoline }}-\mathrm{C}-\mathrm{C}$) and 134.7 ($\mathrm{Se}-\mathrm{C}-\mathrm{C}$) pm in 1c.

S3b
S4b

Scheme S2

A CSD search afforded 77 hits for the bond pattern reported in formula S3a and 8 hits for the bond pattern reported in formula S4a. Thirty one of the hits for formula S3a (Refcodes: UTEXAU, UTEXEY, UTEXUO, ABUPEU, DAVLOB, DEPICY, DOKSOM, EJIXIF, EJIXOL, EJIXUR, EJIYAY, ETHIDB, IQIFUL, KAGLUZ, LEFROD, LEFRUJ, LIWCAW, LOFDAN, MUJGAB, OMAHUG, PUDMIK, QINWER, QOHDEX, SAKHET, TURJIB, WINYOJ, WINYUP, WINZAW, WIPBEE, XEVSAU, XIYZUB) and seven of the hits for formula S4a (Refcodes: DAQYEZ, DECYNI, MACAZC10, PEZJUB, VAJNOJ, VAJNUP, VAJPAX) were not uniquely related to the bond pattern of formulas S3a and S4a (e.g. they corresponded to one of the likely resonance structures of the compound). The mean value of the bond length of the quinoline $\mathrm{C}-\mathrm{C}$ pendant in the remaining forty six hits of formula S3a (Refcodes: UTAJOQ, ADAQIG, BUTTER, BUTTIV, BUVXOH, BUZSAR, CERSAU, CIMCOS, GOLDUI, HISHIB, HISHIB01, IFABIB, IKAPER, JAXSAD, JUTBEH, KUTYAA, LEDBOL, LEZRIS, LEZRIS01, LIBXOK, MODQUS, NENMID, NENXOV, NERYUF, NUPTAU, PEMRUU, RIPQOY, RITKUB, RUMGAJ, SAPWIQ, SIFGOE, SIFGOE02, TEJTEH, TIDFOB, VIXMAS, WIBKOJ, WUTPOR, WUTPUX, XICMUS, XICNED, XICWEL, ZAWPOE, ZUGTEC, GOLDUI01, KAMCAF, NAWPOT) and the remaining hit of formula S4a (Refcode: KIYYIB) is given in formulas S3a and $\mathbf{4 a}$. The respective bond length is $139.2 \mathbf{p m}$ in $\mathbf{1 a}$ and 141.0 pm in $\mathbf{1 c}$.

A CSD search afforded 53 hits for the bond pattern reported in formula S3b and 7 hits for the bond pattern reported in formula S4b. Twenty tree of the hits for formula S3b (Refcodes: UTEXAU, UTEXEY, UTEXUO, DEPICY, DOKSOM, EJIXIF, EJIXOL, EJIXUR, EJIYAY, IQIFUL, LIWCAW, LOFDAN, OMAHUG, PUDMIK, QINWER, SAKHET, TURJIB, WINYOJ, WINYUP, WINZAW, WIPBEE, XEVSAU, XIYZUB) and the all seven hits for formula S4b (Refcodes: DAQYEZ, DECYNI, MACAZC10, PEZJUB, VAJNOJ, VAJNUP, VAJPAX) were not uniquely related to the bond pattern of formulas $\mathbf{S 3 b}$ and $\mathbf{S 4 b}$ (e.g. they corresponded to one of the likely resonance structures of the compound). The mean values of the ylidene bond lengths in the remaining thirty hits of formula S3b (Refcodes: UTAJOQ, ADAQIG, BUZSAR, CIMCOS, HISHIB, HISHIB01, IFABIB, IKAPER, JAXSAD, JUTBEH, KUTYAA, LEZRIS, LEZRIS01, LIBXOK, MODQUS, NENMID, NERYUF, NUPTAU, RIPQOY, RITKUB, RUMGAJ, SAPWIQ, SIFGOE, SIFGOE02, VIXMAS, XICMUS, XICNED, ZAWPOE, ZUGTEC KAMCAF) are given in formula S3b. The respective bond lengths are 139.2 ($\mathrm{N}_{\text {quinoline }}-\mathrm{C}-\mathrm{C}$) and 139.3 ($\mathrm{Se}-\mathrm{C}-\mathrm{C}$) pm in 1a and 141.0 ($\mathrm{N}_{\text {quinoline }}-\mathrm{C}-\mathrm{C}$) and 134.7 ($\mathrm{Se-C-C}$) pm in 1c.

S5a

S5b

Scheme S3

A CSD search afforded 13 hits for the bond pattern reported in formula S5a. Five of them (Refcodes: ANEQUG, ANERAN, ANERER, ANERIV, MULHIK) were not uniquely related to the bond pattern of formula S5a (e.g. they corresponded to one of the likely resonance structures of the compound). The mean value of the bond length of the benzoselenazole pendant ($\mathrm{Se}-\mathrm{C}-\mathrm{C}$ bond) in the remaining eight hits (Refcodes: UTUQIL, UTUQOR, UTUQUX, UTURAE, UTUREI, UTURIM, UTUROS, UTUROS01) is given in formula S5a. The respective bond length is 139.3 pm in $\mathbf{1 a}$ and 134.7 pm in $\mathbf{1 c}$.

A CSD search afforded 12 hits for the bond pattern reported in formula S5b. Five of them (Refcodes: ANEQUG, ANERAN, ANERER, ANERIV, MULHIK) were not uniquely related to the bond pattern of formula $\mathbf{S 5 b}$ (e.g. they corresponded to one of the likely resonance structures of the compound). The mean values of the ylidene bond lengths in the remaining seven hits (Refcodes: UTUQIL, UTUQOR, UTUQUX, UTURAE, UTUREI, UTUROS, UTUROS01) are given in formula S5b. The respective bond lengths are $139.2\left(\mathrm{~N}_{\text {quinoline }}-\mathrm{C}-\mathrm{C}\right)$ and 139.3 ($\mathrm{Se}-\mathrm{C}-\mathrm{C}$) pm in 1a and 141.0 ($\mathrm{N}_{\text {quinoline }}-\mathrm{C}-\mathrm{C}$) and 134.7 (S-C-C) pm in 1c.

S5b

Scheme S4

A CSD search afforded 5 hits for the bond pattern reported in formula $\mathbf{S 6}$ (Refcodes: ANEQUG, ANERAN, ANERER, ANERIV, BUXXUP). Four of them (Refcodes: ANEQUG, ANERAN, ANERER, ANERIV) were not uniquely related to the bond pattern of formula S6 (e.g. they corresponded to one of the likely resonance structures of the compound). No statistics on bond lengths could be made by using the single remaining hit (Refcode: BUXXUP).

4. Molecular electrostatic potential

3.1. Computational method

Geometry optimizations were carried out using Gaussian 09, with the hybrid meta density functional M06-2X and the $6-311 \mathrm{G}(\mathrm{d})$ basis [5]. The WFA-SAS code was used to compute the electrostatic potential on 0.001 au cationic surfaces [6].

Figure S4

Computed electrostatic potential on the 0.001 au molecular surface of diiodine. Color ranges, in kcal mol ${ }^{-1}$: red, more positive than 20; yellow, between 20 and 10; green, between 10 and 0 ; blue, less than 0 (negative). The most positive potentials ($\mathrm{V}_{\mathrm{s}, \text { max }}$) are 32 (red) at the ends of the molecule; the most negative ($\mathrm{V}_{\mathrm{s}, \text { min }}$) are -4 (blue) on the sides.

5. References

[1] Bruker, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA, 1999.
[2] G. M. Sheldrick; SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany, 1997.
[3] M. A. Flatkenm; M. J. Huber; G. J. Reiss, Z. Kristallogr. - New Cryst. Struct. 2014, 229, 423424; doi:10.1515/ncrs-2014-9031.
[4] Y. V. Nelyubina; M. Yu. Antipin; D. S. Dunin; V. Yu. Kotov; K. A. Lyssenko, Chem. Commun. 2010, 46, 5325-5327; doi:10.1039/c0cc01094d.
[5] M. J. Frisch; G. W. Trucks; H. B. Schlegel; G. E. Scuseria; M. A. Robb et al., Gaussian 09, Revision A.1; Gaussian, Inc., Wallingford, CT, 2009.
[6] F. A. Bulat; A. Toro-Labbé; T. Brinck; J. S. Murray; P. Politzer J. Mol. Model. 2014, 16, 16791691.

[^0]: a Laboratory of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy. E-mail: giuseppe.resnati@polimi.it.
 ${ }^{\text {b }}$ Department of Chemistry, University of New Orleans, New Orleans, LA 70148 USA.

[^1]: 1.4. 1-Ethyl-6-methoxy-2-[(E)-(3-ethyl-5-methoxy-2(3H)-benzoselenazolylidene)methyl]quinolinium iodide/(diiodine) 0.5 (1c)
 Dark red thin plate-like crystals of 1c were formed after slow isothermal evaporation at room temperature of a solution of $\mathbf{1 b}$ and $\mathrm{I}_{2}\left(2: 1\right.$ molar ratio) in a mixture of $\mathrm{CHCl}_{3} / \mathrm{MeOH}(4: 1)$. FT-IR (v, cm^{-1}): 2969, 2933, 1611, 1568, 1515, 1481, 1374, 1258, 1213, 1159, 1125, 1056, 1031, 965, 819, 444.

