Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

SUPPORTING INFORMATIONS

A novel chemosensor based on rhodamine and azobenzene moieties for selective detection of Al^{3+} ion

Subhabrata Mabhai,^a Malay Dolai,^b Satyajit Dey,^{*,c} Anamika Dhara, ^d Bhriguram Das,^c Atanu Jana,^{*,e}

^aDepartment of Chemistry, Mahishadal Raj College, East Midnapore, Mahishadal, West Bengal, Pin No. 721628, India

^bDepartment of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur 721401, India

^cDepartment of Chemistry, Tamralipta Mahavidyalaya, East Midnapore, West Bengal, Pin No. 721636, India. E-mail: satyajitdeyoc@gmail.com

^dDepartment of Chemistry, Jadavpur University, Raja S. C. Mallick Road, Kolkata 700032, India.

^eDepartment of Chemistry, Indian Institute of Technology, Delhi, HauzKhas, New Delhi-110016, India. E-mail: atanujanaic@gmail.com

7.2)] at 25 °C

Probe	λem	LOD	Total	Stokes	Solvent	Detection
	(nm)	(µM)	metal	shift	(V/V)	method
			ions	(nm)		
Ref. [1]	582	3.98	19	20	CH ₃ CN/H ₂ O (95:5)	CHEF,
						Fluorescence
						quenching
Ref. [2]	582	0.196	21	22	EtOH-H ₂ O $(1:1)$	
Ref. [3]	550	0.183	17	16	CH ₃ CN/H ₂ O (9:1)	CHEF,PET FRET
Ref. [4]	556	3.26	17	17	H_2O -EtOH (4:1)	CHEF
Ref. [5]	560	38.9	12	40	EtOH	FRET
Ref. [6]	558	4.17	16	28	DMF	CHEF
Ref. [7]	555	0.34	12	26	MeOH-H ₂ O (1:1)	CHEF
Ref. [8]	490	0.42	18	25	CH ₃ CN-H ₂ O(50:50)	ICT,CHEF
Ref. [9]	513	2.40	13	139	DMSO	ESIPT
Ref. [10]	503	1.04	17	57	EtOH- $H_2O(9:1)$	
Ref. [11]	538	0.29	13	58	DMSO	ICT
Ref. [12]	450	1.54	20	45	CH ₃ CN–HEPES	ICT
					buffer	
Our work	582	0.11	17	28	EtOH-H ₂ O (4:1)	CHEF, PET

Table S1	The com	narison	of this	nrohe	with some	other	fluorescent	nrohes	for A	13+
I abit bi		parison	or uns	probe	with some	ound	nuorescent	probes		11

References

- J. C. Peigang Dinga, Jinhui Wanga and C. Yufen Zhaoa-c and Yong Ye a, *New J. Chem.*, 2015, **39**, 342–348.
- 2 X. Bao, Q. Cao, Y. Xu, Y. Gao, Y. Xu, X. Nie, B. Zhou, T. Pang and J. Zhu, *Bioorganic Med. Chem.*, 2015, **23**, 694–702.
- 3 L. Fan, J. C. Qin, T. R. Li, B. D. Wang and Z. Y. Yang, *Sensors Actuators, B Chem.*, 2014, **203**, 550–556.
- 4 Y. Fu, X.-J. Jiang, Y.-Y. Zhu, B.-J. Zhou, S.-Q. Zang, M.-S. Tang, H.-Y. Zhang and T. C. W. Mak, *Dalt. Trans.*, 2014, **43**, 12624.
- 5 Y. Kim, G. Jang and T. S. Lee, ACS Appl. Mater. Interfaces, 2015, 7, 15649–15657.
- 6 M. Li, X. Zhang, Y. -hua. Fan and C. Bi, *Luminescence*, 2016, **31**, 851–855.
- 7 R. Alam, R. Bhowmick, A. S. M. Islam, A. katarkar, K. Chaudhuri and M. Ali, *New J. Chem.*, 2017, **41**, 8359–8369.
- 8 R. Patil, A. Moirangthem, R. Butcher, N. Singh, A. Basu, K. Tayade, U. Fegade, D. Hundiwale and A. Kuwar, *Dalton Trans.*, 2014, **43**, 2895–9.
- 9 W. H. Ding, D. Wang, X. J. Zheng, W. J. Ding, J. Q. Zheng, W. H. Mu, W. Cao and L. P. Jin, *Sensors Actuators, B Chem.*, 2015, 209, 359–367.
- 10 Y. Zhang, Y. Fang, N. Z. Xu, M. Q. Zhang, G. Z. Wu and C. Yao, *Chinese Chem. Lett.*, 2016, **27**, 1673–1678.
- 11 D. Karak, S. Lohar, A. Sahana, S. Guha, A. Banerjee and D. Das, *Anal. Methods*, 2012, **4**, 1906.
- 12 S. Goswami, A. K. Das, K. Aich, A. Manna, H. K. Fun and C. K. Quah, *Supramol. Chem.*, 2014, **26**, 94–104.