Supporting Information

Mechanochemistry and Cocrystallization of 3-Iodoethynylbenzoic

Acid with Nitrogen-Containing Heterocycles: Concurrent Halogen

and Hydrogen Bonding

Patrick M.J. Szell, Julien Dragon, Scott Zablotny, Stephen R. Harrigan,

Bulat Gabidullin, and David L. Bryce*

*Author to whom correspondence is to be addressed

Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation University of Ottawa 10 Marie Curie Private Ottawa, Ontario K1N 6N5 Canada Tel: +1-613-562-5800 ext.2018; fax: +1-613-562-5170 Email: dbryce@uottawa.ca

Table of Contents

Experimental Masses and ¹³ C Solid-State NMR ParametersS3
Powder X-ray Diffractograms
Figure S1. Experimental and calculated powder X-ray diffractograms of 3-iodoethynylbenzoic acid (1)
Figure S2. Experimental and calculated powder X-ray diffractograms of 1a , (3-iodoethynylbenzoic acid)(2,3,5,6-tetramethylpyrazine), comparing the sample obtained from slow evaporation and the sample obtained from ball millingS5
Figure S3. Experimental and calculated powder X-ray diffractograms of 1b , (3-iodoethynylbenzoate)(1,4-diazabicyclo[2.2.2]octanium), comparing the sample obtained from slow evaporation and the sample obtained from ball milling
Figure S4. Experimental and calculated powder X-ray diffractograms of 1c(i) , (3-iodoethynylbenzoate)(piperazinium), comparing the sample obtained from slow evaporation and the sample obtained from ball milling
Figure S5. Experimental and calculated powder X-ray diffractograms of 1d , (3-iodoethynylbenzoic acid)(hexamethylenetetramine), comparing the sample obtained from slow evaporation and the sample obtained from ball milling
ORTEP Plots
Figure S6. Thermal ellipsoid plot of 3-iodoethynylbenzoic acid (1)
Figure S7. Thermal ellipsoid plot of (3-iodoethynylbenzoic acid) ₂ (2,3,5,6-tetramethylpyrazine) (1a).
Figure S8. Thermal ellipsoid plot of (3-iodoethynylbenzoate)(1,4-diazabicyclo[2.2.2]octanium) (1b)
Figure S9. Thermal ellipsoid plot of (3-iodoethynylbenzoate)(piperazinium) [1c(i)]S9
Figure S10. Thermal ellipsoid plot of (3-iodoethynylbenzoate) ₂ (piperazinium) [1c(ii)]S10
Figure S11. Thermal ellipsoid plot of (3-iodoethynylbenzoic acid)(hexamethylenetetramine) (1d).

Experimental Masses and ¹³C Solid-State NMR Parameters

compound	mass 1 (mg)	mass acceptor (mg)
1a	100	50.0
1b	100	41.0
1c(i)	100	31.7
1d	100	51.6

Table S1. Experimental masses used for the synthesis of each cocrystal by slow evaporation.

Table S2. Experimental masses and yields for the synthesis of each cocrystal by ball milling.

mass 1 (mg)	mass acceptor (mg)	mass product (mg)	yield (%)
702.5	358.0	832.2	78
209.9	87.7	253.5	85
47.0	17.2	58.3	91
199.8	103.5	197.5	65
	mass 1 (mg) 702.5 209.9 47.0 199.8	mass 1 mass acceptor (mg) (mg) 702.5 358.0 209.9 87.7 47.0 17.2 199.8 103.5	mass 1 (mg) mass acceptor (mg) mass product (mg) 702.5 358.0 832.2 209.9 87.7 253.5 47.0 17.2 58.3 199.8 103.5 197.5

sample	spinning speeds	recycle delay (s)	number of transients
1	10 kHz	60	256
1a (slow evaporation)	8 kHz, 9 kHz	3	2048
1a (ball milling)	9 kHz	3	2048
1b (slow evaporation)	8 kHz, 10 kHz	5	256
1b (ball milling)	10 kHz	5	1024
1c(i) (slow evaporation)	7 kHz, 8 kHz	10	2048
1c(i) (ball milling)	7 kHz	10	1024
1d (slow evaporation)	8 kHz, 9 kHz	5	2048
1d (ball milling)	9 kHz	5	4096

Table S3. Selected ¹³C solid-state NMR acquisition parameters for the samples obtained by slow evaporation and ball milling.

Powder X-ray Diffractograms

Figure S1. Experimental and calculated powder X-ray diffractograms of 3-iodoethynylbenzoic acid (1).

Figure S2. Experimental and calculated powder X-ray diffractograms of **1a**, (3-iodoethynylbenzoic acid)(2,3,5,6-tetramethylpyrazine), comparing the sample obtained from slow evaporation and the sample obtained from ball milling.

Figure S3. Experimental and calculated powder X-ray diffractograms of **1b**, (3-iodoethynylbenzoate)(1,4-diazabicyclo[2.2.2]octanium), comparing the sample obtained from slow evaporation and the sample obtained from ball milling.

Figure S4. Experimental and calculated powder X-ray diffractograms of **1c(i)**, (3-iodoethynylbenzoate)(piperazinium), comparing the sample obtained from slow evaporation and the sample obtained from ball milling.

Figure S5. Experimental and calculated powder X-ray diffractograms of 1d, (3-iodoethynylbenzoic acid)(hexamethylenetetramine), comparing the sample obtained from slow evaporation and the sample obtained from ball milling.

ORTEP Plots

Figure S6. Thermal ellipsoid plot of 3-iodoethynylbenzoic acid (1).

Figure S7. Thermal ellipsoid plot of (3-iodoethynylbenzoic acid)₂(2,3,5,6-tetramethylpyrazine) (1a).

Figure S8. Thermal ellipsoid plot of (3-iodoethynylbenzoate)(1,4-diazabicyclo[2.2.2]octanium) (1b).

Figure S9. Thermal ellipsoid plot of (3-iodoethynylbenzoate)(piperazinium) [1c(i)].

Figure S10. Thermal ellipsoid plot of (3-iodoethynylbenzoate)₂(piperazinium) [1c(ii)].

Figure S11. Thermal ellipsoid plot of (3-iodoethynylbenzoic acid)(hexamethylenetetramine) (1d).