■ EXPERIMENTAL AND COMPUTATIONAL SECTION

Synthesis. A solution of $1(260 \mathrm{mg}, 1.26 \mathrm{mmol})$ prepared according to the literature procedure ${ }^{\{1\}}$ in benzene (30 ml) was treated with $\mathrm{AlCl}_{3}(200 \mathrm{mg}, 1.50 \mathrm{mmol})$ and then with $\mathrm{I}_{2}(500 \mathrm{mg}, 1.96 \mathrm{mmol})$ and the mixture was left stirring at ambient temperature for 24 h . The mixture was then treated carefully with water $(20 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ under cooling to $0^{\circ} \mathrm{C}$. The organic layer was separated, evaporated, and the residual solid was separated by column ($2.5 \times 30 \mathrm{~cm}$) chromatography using a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: hexane (1:1). The elution resulted in the separation of the main fraction of $\mathrm{R}_{\mathrm{F}}($ hexane $)=0.05$. This solution was evaporated to dryness and identified by ${ }^{11} \mathrm{~B}$ NMR spectroscopy as 4 .

Crystallography. A colorless block-like specimen of C2H7B7CIIP2, approximate dimensions $0.165 \mathrm{~mm} \times 0.278 \mathrm{~mm} \times 0.325 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. Full-sets of diffraction data for 4 were collected at $150(2) \mathrm{K}$ with a Bruker D8-Venture diffractometer equipped with $\mathrm{Mo}\left(\mathrm{Mo} / \mathrm{K}_{\alpha}\right.$ radiation; $\lambda=$ $0.71073 \AA$) microfocus X-ray ($\mathrm{I} \mu \mathrm{S}$) source, Photon CMOS detector and Oxford Cryosystems cooling device.

The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. Data were corrected for absorption effects using the Multi-Scan method (SADABS) Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.730 . Obtained data were treated by XT-version 2014/5 and SHELXL-2014/7 software implemented in APEX3 v2016.5-0 (Bruker AXS) system. ${ }^{\{2\}}$

A total of 1674 frames were collected. The total exposure time was 1.71 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 32315 reflections to a maximum θ angle of 28.32° ($0.75 \AA$ resolution), of which 2657 were independent (average redundancy 12.162 , completeness $\left.=99.8 \%, \mathrm{R}_{\text {int }}=2.27 \%, \mathrm{R}_{\text {sig }}=1.25 \%\right)$ and $2613(98.34 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\mathrm{a}=11.9909(6) \AA, \mathrm{b}=7.4346(4) \AA, \mathrm{c}=13.3364(7)$ $\AA, \beta=115.7460(10)^{\circ}$, volume $=1070.88(10) \AA^{3}$, are based upon the refinement of the XYZcentroids of 147 reflections above $20 \sigma(\mathrm{I})$ with $13.67^{\circ}<2 \theta<59.91^{\circ}$. The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group $P 2_{1} / \mathrm{c}$, with $\mathrm{Z}=4$. The final anisotropic full-matrix least-squares refinement on F^{2} with 126 variables converged at R_{1} $=1.89 \%$, for the observed data and $w \mathrm{R}_{2}=5.53 \%$ for all data. The goodness-of-fit was 1.379 . The largest peak in the final difference electron density synthesis was $0.621 \mathrm{e} / \AA^{3}$ and the largest hole was $-1.677 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.206 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $2.053 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 616 \mathrm{e}^{-}$.

Hydrogen atoms were mostly localized on a difference Fourier map, however to ensure uniformity of treatment of crystal, all hydrogen were recalculated into idealized positions (riding model) and assigned temperature factors $\mathrm{H}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}$ (pivot atom) with C-H and B-H distances of $1.1 \AA$.

Table S1 Atomic coordinates and equivalent isotropic atomic displacement parameters (\AA^{2}) for 4. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor

	$\mathbf{c \|} \mathbf{x} / \mathbf{a}$	\mathbf{y} / \mathbf{b}	\mathbf{z} / \mathbf{c}	$\mathbf{U}(\mathbf{e q})$
I1	$0.39772(2)$	$0.70440(2)$	$0.53770(2)$	$0.01834(6)$
C11	$0.05161(4)$	$0.73518(7)$	$0.92019(4)$	$0.02255(10)$
B1	$0.78463(17)$	$0.8683(2)$	$0.84934(15)$	$0.0150(3)$
B2	$0.81303(18)$	$0.9127(3)$	$0.73222(16)$	$0.0177(3)$
B3	$0.89053(18)$	$0.7262(2)$	$0.82726(16)$	$0.0145(3)$
B4	$0.77536(17)$	$0.6345(3)$	$0.86920(15)$	$0.0148(3)$
B5	$0.63681(17)$	$0.7602(3)$	$0.80037(16)$	$0.0144(3)$
B6	$0.65952(17)$	$0.9262(2)$	$0.71893(15)$	$0.0151(3)$
C9	$0.65582(15)$	$0.5590(2)$	$0.74679(13)$	$0.0148(3)$
B10	$0.59340(18)$	$0.7136(2)$	$0.65495(16)$	$0.0142(4)$
C11	$0.69043(17)$	$0.8146(2)$	$0.62125(15)$	$0.0157(3)$
P8	$0.80830(4)$	$0.47697(6)$	$0.75859(4)$	$0.01706(10)$
P7	$0.83665(4)$	$0.68611(6)$	$0.65556(4)$	$0.01806(10)$

Table S2 Bond lengths (\AA) for $\mathbf{4}$

I1-B10	$2.184(2)$	C11-B3	$1.786(2)$
B1-B2	$1.768(3)$	B1-B4	$1.769(2)$
B1-B3	$1.772(3)$	B1-B6	$1.787(3)$
B1-B5	$1.791(3)$	B1-H1	1.12
B2-C11	$1.730(3)$	B2-B6	$1.774(3)$
B2-B3	$1.836(3)$	B2-P7	$2.053(2)$
B2-H2	1.12	B3-B4	$1.832(3)$
B3-P8	$2.1117(19)$	B3-P7	$2.113(2)$
B4-C9	$1.732(2)$	B4-B5	$1.775(3)$
B4-P8	$2.0516(18)$	B4-H4	1.12
B5-C9	$1.715(3)$	B5-B6	$1.742(3)$
B5-B10	$1.810(3)$	B5-H5	1.12
B6-C11	$1.715(2)$	B6-B10	$1.807(3)$
B6-H6	1.12	C9-B10	$1.608(2)$
C9-P8	$1.8681(17)$	C9-H9	$0.91(3)$
B10-C11	$1.604(3)$	C11-P7	$1.8706(19)$
C11-H11	$0.91(3)$	P8-P7	$2.1970(6)$

Table S3 Bond angles $\left(^{\circ}\right.$) for 4

B2-B1-B4	$111.35(13)$	B2-B1-B3	$62.45(11)$
B4-B1-B3	$62.30(10)$	B2-B1-B6	$59.85(10)$

B4-B1-B6	$107.55(13)$	B3-B1-B6	$109.94(13)$
B2-B1-B5	$107.54(13)$	B4-B1-B5	$59.81(11)$
B3-B1-B5	$109.81(13)$	B6-B1-B5	$58.26(10)$
B2-B1-H1	120.3	B4-B1-H1	120.4
B3-B1-H1	119.0	B6-B1-H1	122.6
B5-B1-H1	122.7	C11-B2-B1	$105.01(13)$
C11-B2-B6	$58.60(10)$	B1-B2-B6	$60.60(10)$
C11-B2-B3	$105.05(13)$	B1-B2-B3	$58.88(10)$
B6-B2-B3	$107.69(13)$	C11-B2-P7	$58.54(8)$
B1-B2-P7	$114.09(11)$	B6-B2-P7	$111.00(12)$
B3-B2-P7	$65.56(9)$	C11-B2-H2	125.9
B1-B2-H2	121.1	B6-B2-H2	121.3
B3-B2-H2	121.7	P7-B2-H2	116.7
B1-B3-C11	$119.95(12)$	B1-B3-B4	$58.77(10)$
C11-B3-B4	$122.24(12)$	B1-B3-B2	$58.67(10)$
C11-B3-B2	$121.42(12)$	B4-B3-B2	$105.62(13)$
B1-B3-P8	$111.22(11)$	C11-B3-P8	$119.62(10)$
B4-B3-P8	$62.22(8)$	B2-B3-P8	$111.24(11)$
B1-B3-P7	$111.12(11)$	C11-B3-P7	$119.12(10)$
B4-B3-P7	$111.24(11)$	B2-B3-P7	$62.18(9)$
P8-B3-P7	$62.67(6)$	C9-B4-B1	$104.90(12)$
C9-B4-B5	$58.52(10)$	B1-B4-B5	$60.71(11)$
C9-B4-B3	$104.94(12)$	B1-B4-B3	$58.93(10)$
B5-B4-B3	$107.85(13)$	C9-B4-P8	$58.44(8)$
B1-B4-P8	$114.14(11)$	B5-B4-P8	$110.97(11)$
B3-B4-P8	$65.60(8)$	C9-B4-H4	126.1
B1-B4-H4	121.0	B5-B4-H4	121.2
B3-B4-H4	121.7	P8-B4-H4	116.8
C9-B5-B6	$105.84(13)$	C9-B5-B4	$59.49(10)$
B6-B5-B4	$109.31(13)$	C9-B5-B1	$104.70(13)$
B6-B5-B1	$60.75(11)$	B4-B5-B1	$59.48(10)$
C9-B5-B10	$54.19(10)$	B6-B5-B10	$61.15(10)$
B4-B5-B10	$102.84(13)$	B1-B5-B10	$104.77(13)$
C9-B5-H5	124.9	B6-B5-H5	120.0
B4-B5-H5	122.3	B1-B5-H5	123.0
B10-B5-H5	125.6	C11-B6-B5	$105.95(13)$
C11-B6-B2	$59.42(11)$	B5-B6-B2	$109.52(13)$
C11-B6-B1	$104.82(13)$	B5-B6-B1	$60.99(11)$
B2-B6-B1	$59.55(10)$	C11-B6-B10	$54.11(10)$
B5-B6-B10	$61.28(11)$	B2-B6-B10	$102.77(13)$
B1-B6-B10	$105.04(13)$	C11-B6-H6	125.0
B5-B6-H6	119.8	B2-B6-H6	122.4
B1-B6-H6	122.8	B10-B6-H6	125.5
B10-C9-B5	$65.92(11)$	B10-C9-B4	$114.04(13)$
B5-C9-B4	$61.99(11)$	B10-C9-P8	$114.35(12)$
B5-C9-P8	$123.511)$	B4-C9-P8	$69.36(8)$

B10-C9-H9	$123.3(16)$	B5-C9-H9	$113.9(16)$
B4-C9-H9	$113.2(15)$	P8-C9-H9	$110.3(16)$
C11-B10-C9	$113.19(15)$	C11-B10-B6	$60.01(10)$
C9-B10-B6	$107.56(13)$	C11-B10-B5	$107.73(14)$
C9-B10-B5	$59.89(10)$	B6-B10-B5	$57.57(11)$
C11-B10-I1	$119.91(12)$	C9-B10-I1	$121.54(12)$
B6-B10-I1	$118.69(11)$	B5-B10-I1	$119.52(12)$
B10-C11-B6	$65.88(11)$	B10-C11-B2	$114.07(14)$
B6-C11-B2	$61.98(11)$	B10-C11-P7	$114.15(11)$
B6-C11-P7	$123.37(12)$	B2-C11-P7	$69.39(9)$
B10-C11-H11	$124.1(15)$	B6-C11-H11	$113.9(16)$
B2-C11-H11	$112.4(16)$	P7-C11-H11	$110.0(15)$
C9-P8-B4	$52.20(7)$	C9-P8-B3	$90.32(7)$
B4-P8-B3	$52.18(7)$	C9-P8-P7	$97.35(5)$
B4-P8-P7	$100.15(6)$	B3-P8-P7	$58.69(5)$
C11-P7-B2	$52.07(8)$	C11-P7-B3	$90.34(8)$
B2-P7-B3	$52.26(8)$	C11-P7-P8	$97.54(6)$
B2-P7-P8	$100.19(6)$	B3-P7-P8	$58.64(5)$

Table S4 Anisotropic atomic displacement parameters ($\AA 2$) for 4. The anisotropic atomic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 h_{k ~ a}{ }^{*} b^{*} U_{12}\right]$

	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
I1	$0.01330(8)$	$0.02104(9)$	$0.01519(8)$	$0.00033(3)$	$0.00108(6)$	$0.00131(3)$
C11	$0.0128(2)$	$0.0279(2)$	$0.0216(2)$	$-0.00378(17)$	$0.00248(17)$	$0.00061(16)$
B1	$0.0167(8)$	$0.0135(8)$	$0.0143(8)$	$-0.0011(6)$	$0.0065(7)$	$0.0006(6)$
B2	$0.0181(9)$	$0.0164(8)$	$0.0200(9)$	$0.0014(7)$	$0.0095(7)$	$-0.0009(7)$
B3	$0.0130(8)$	$0.0160(8)$	$0.0139(8)$	$-0.0009(6)$	$0.0051(7)$	$0.0009(6)$
B4	$0.0150(8)$	$0.0166(9)$	$0.0118(7)$	$0.0004(6)$	$0.0051(6)$	$-0.0002(7)$
B5	$0.0134(8)$	$0.0162(8)$	$0.0135(8)$	$0.0010(7)$	$0.0057(7)$	$0.0003(7)$
B6	$0.0157(8)$	$0.0144(8)$	$0.0157(8)$	$0.0003(6)$	$0.0073(7)$	$0.0012(6)$
C9	$0.0152(7)$	$0.0125(7)$	$0.0143(7)$	$0.0005(6)$	$0.0042(6)$	$-0.0019(6)$
B10	$0.0131(9)$	$0.0161(9)$	$0.0111(8)$	$0.0004(6)$	$0.0033(7)$	$0.0010(6)$
C11	$0.0160(8)$	$0.0188(8)$	$0.0120(8)$	$0.0044(6)$	$0.0058(6)$	$0.0032(6)$
P8	$0.0184(2)$	$0.01265(19)$	$0.0165(2)$	$-0.00144(15)$	$0.00422(17)$	$0.00343(15)$
P7	$0.0179(2)$	$0.0244(2)$	$0.0140(2)$	$-0.00045(15)$	$0.00891(18)$	$0.00355(16)$

Table S5 Hydrogen atomic coordinates and isotropic atomic displacement parameters (\AA^{2}) for $\mathbf{4}$

	\mathbf{x} / \mathbf{a}	$\mathbf{y / b}$	$\mathbf{z / c}$	$\mathbf{U}(\mathbf{e q})$
H1	0.8203	0.9620	0.9224	0.018
H2	0.8647	1.0360	0.7283	0.021
H4	0.8025	0.5773	0.9543	0.018
H5	0.5710	0.7840	0.8382	0.017
H6	0.6082	1.0567	0.7046	0.018
H9	$0.612(2)$	$0.467(4)$	$0.757(2)$	$0.027(6)$
H11	$0.669(2)$	$0.877(3)$	$0.557(2)$	$0.024(6)$

Computational details. Magnetic shielding was calculated using the GIAO-MP2 method incorporated into Gaussian $09^{\{3\}}$ utilizing the IGLO-II basis with the MP2/cc-pVTZ geometry. Electrostatic potentials were computed at the HF/cc-pVDZ level (for I basis set in Ref. \{4\}) using Gaussian09 and Molekel4.3 ${ }^{\{5\}}$ programs. It has recently been shown that this basis set size is sufficient for these purposes. ${ }^{\{6\}}$

Interaction energy (ΔE) values were calculated for all pairwise interactions the crystal structures of 4. All hydrogen atoms were optimized using DFT-D3/BLYP/DZVP method prior the energy calculations. ${ }^{\{7\}} \Delta E$ were evaluated at MP2.5/CBS using the Turbomole $6.6^{\{8\}}$ and Cuby $4^{\{9\}}$ programs. MP2.5/CBS was calculated as the sum of MP2/CBS energy and MP2.5 correction. MP2/CBS was estimated by the extrapolation from cc-pVTZ to cc-pVQZ (for I atoms cc-pVTZ-PP basis set with pseudopotential was used). ${ }^{\{10\}}$ The MP2.5 correction term was calculated using the aug-cc-pVDZ basis set. Counterpoise corrections for basis set superposition error (BSSE) were used for all energy calculations.

REFERENCES

1 J. Holub, T. Jelínek, D. Hnyk, Z. Plzák, I. Císařová, M. Bakardjiev and B. Štíbr, B. Chem. Eur. J., 2001, 7, 1546.

2 G.M. Sheldrick, Acta Crystallogr. Set. A: Fundam. Crystallogr., 2015, 71, 3.
3 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

4 A. Bergner, M. Dolg, W. Küchle, H. Stoll and H. Preuss, Mol. Phys., 1993, 80, 1431.
5 a) MOLEKEL 4.3, P. Flükiger, H. P. Lüthi, S. Portmann and J. Weber, Swiss Center for Scientific Computing, Manno (Switzerland), 2000; b) S. Portmann and H. P. Lüthi. MOLEKEL: CHIMIA, 2007, 28, 555-569.

6 K. E. Riley, K.-A.Tran, P. Lane, J. S. Murray and P. Politzer, J. Comput. Sci. 2016, 17, 273.
7 J. Hostas and J. Rezac, J. Chem. Theory Comput., 2017, 13, 3575
8 TURBOMOLE V6.6 2014, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.

9 J. Řezáč, J. Comput. Chem., 2016, 37, 1230.
10 A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch, J. Olsen and A. K. Wilson, Chem. Phys. Lett., 1998, 286, 243.

