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Synthesis and characterization
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BTAC

Reagent & condition: (a) Aq. KOH, water, 90 °C, 12h, 60%; (b) 10% Pd-C, H, balloon, rt, 5h,
crude; (¢) Ethyl pyruvate, ethanol, reflux, 5h, 29%; (d) SeO,, dioxane, 75 °C, 5h, 62%; (e) 2-
Aminothiophenol, KHSOy, reflux, 12h, 57% (f) Acryolyl chloride, Et;N, DCM, 2h, 54%.

Analytical data of compounds and intermediates
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Fig. S1: 'H NMR of compound 2 in DMSO-dg.
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Fig. S2: ESI-MS of compound 2
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Fig. S3: 'H NMR of compound 3 in DMSO-dg
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Fig. S4: ESI-MS of compound 3
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Fig. S5: '"H NMR of compound 5 in DMSO-dg
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Fig. S7: '"H NMR of compound 6 in DMSO-dg
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Fig. S8: ESI-MS of Compound 6
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Fig. S9:

'H NMR of Probe BTAC in CDCl;
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Fig. S11: 13C NMR spectra of BTAC in DMSO-dg

Calculations for detection limit
The detection limit (DL) of BTAC for Cys were determined from the following equation:

DL =K* Sb1/S

Where K =2 or 3 (we take 2 in this case); Sb1 is the standard deviation of the blank solution; S
is the slope of the calibration curve.

From graph Sb1=0.49467, S=7.94964E8. DL=1.24 x 10 'M = 0.124 pM=124 nM

DL = 2x0.49467/7.94964E6 = 1.24 x10'M=0.124 uM=124 nM
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Fig. S12. Calibration curve for Fluorescence titration of BTAC at 560 nm with Cys.
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Fig. S13 (b) Fluorescence responses of BTAC (10 uM) to Cys in the absence and presence of
various amino acids (100 uM) in aqueous DMSO (DMSO: H,O = 4:1 v/v, 10 mM HEPES
buffer, pH = 7.4). The blue bars represent the emission changes of BTAC in the presence of
other amino acids (all were 100 uM). The red bars represent the emission changes of BTAC with
Cys in the presence of other amino acids. Various amino acids including: 1-Blank, 2- Hcy, 3-
GSH, 4- Glu, 5- Asp, 6- Val, 7- Phe, 8- Tyr, 9- Ala, 10- Ser, 11- Leu, 12- Arg, 13- Pro, 14- Thr,
15- Gly, 16- Trp, 17- 1le, 18- Lys, 19-Met and 20- His. The intensities were recorded at 560 nm.

Fig. S14 : Visual color change (a) under daylight (b) handheld UV-lamp of probe BTAC (10uM)
in presence of various amino acidd (100 uM) in aqueous DMSO (4:1 v/v, 10 mM HEPES buffer,
pH = 7.4) at room temperature. (from left to right): 1- Glu, 2- Asp, 3- Val, 4- Phe, 5- Tyr, 6- Ala,
7- Ser, 8- Leu, 9-Cys, 10- Hey, 11- GSH, 12- Arg, 13- Pro, 14- Thr, 15- Gly, 16- Trp, 17- Ile, 18-

Lys, 19-Met and 20- His.
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Fig. S15: Comparison of the time dependent fluorescence responses of BTAC (10 uM) in
presence of Cys and Hcy in aqueous DMSO (DMSO: H,0 = 4:1 v/v, 10 mM HEPES buffer, pH
=17.4).

Kinetic Studies
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Fig. S16: (a) Pseudo first-order kinetic plot of reaction of BTAC (10 uM) with Cys (100
equiv.), slope=-0.0112 sec!. (b) Kinetic plot of BTAC with 25 equiv. Cys (c) Kinetic plot of
BTAC with 50 equiv. Cys (d) Kinetic plot of BTAC with 80 equiv. Cys in (10 mM, pH 7.4, with
30% DMSO, 4:1, v/v).

The second-order rate constant for this reaction is thus the slope of a linear plot of k/ versus the

concentration of Cys (Fig.S17): k = 2.674 M-!Sec’!
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Fig. S17: Plot of the observed k’ versus the concentration of Cys for the pseudo first-order

reaction of BTAC (10 uM) with varying concentration of Cys (10-150 Eq). Slope = 2.674 M-

1Sec-l.

Cytotoxic effect on Cells

Human adult dermal fibroblast (HADF, Himedia Laboratories, India) cells were culture in
Dulbecco’s modified eagle medium (Gibco, NY) supplemented with 10% fetal bovine serum
(FBS, Gibco, NY) and 1% antibiotic-antimycotic solution (Gibco, NY) and maintained at 37°C
in a humidified CO, incubator. HADF cells were seeded in 24 well plates and allowed to growth
for 24 h. Cells were treated with 10> M BTAC for 1h followed by treatment with 10 M Cys
for 1 h. One well was set as negative control, well without treatment. Cells were washed with
PBS and fluorescence microscopy was carried out under Nikon Inverted microscope (Nikon
eclipse TiU, Japan) equipped with 20x (S Plan Fluor) objective. Excitation filters was used as
510-535 nm band pass filter and images were captured through 555-615 nm emission filter. The
cytotoxic effects of the BTAC and Cys were determined by MTT as per manufacturer protocol
(Himedia). Briefly, HADF cells (103 cells/ well) were treated with 10> M BTAC in DMEM for
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1 h followed by another 1 h with 10*M Cys. A blank (medium only) and a control (cell only)

were set. After incubation, cells were washed with PBS and (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) (MTT) solution was added with DMEM medium. The plate was

incubated for 4 h at 37°C. Solubilization solution was added to solubilize formazan.
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Fig. S18: Cell viability assay of HADF cells to observe the cytotoxic effect of BTAC and

cysteine

Computational studies

Geometries have been optimized using the B3LYP/6-31G(d,p) level of theory in Gaussian 09.

The geometries are verified as proper minima by frequency calculations. Time-dependent density

functional theory calculation has also been performed at the same level of theory.

Table S1. Selected Electronic Excitation Energies (eV), Oscillator Strengths (f), Main
Configurations, and CI Coefficients of the low-lying Excited States of BTAC and BTAC-O-. The
data were calculated by TDDFT//B3LYP/6-31G(d,p) based on the optimized ground state

geometries.
Molecules Electronic Excitation fo Composition®
Transition Energy?
So— S, 2.9694 eV 417.54nm | 0.1567 H-1 — L (58.2%)
BTAC H-1 — L (40.6%)
So—S, 3.0730 eV 403.47nm | 0.7892 H — L (58.4%)
BTAC-O- | S,—S, | 2.8665eV 432.52nm | 0.9742 H — L (99.6%)
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[a] Only selected excited states were considered. The numbers in parentheses are the excitation
energy in wavelength. [b] Oscillator strength. [c¢] H stands for HOMO and L stands for LUMO.

Table S2. Energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO)

Species Enomo (a.u) Erumo(a.u) AE(a.u) AE(eV) AE(kcal/mol)
BTAC -0.22702 -0.10598 0.12104 3.293666 75.95
BTAC-O- -0.06643 0.03645 0.10288 2.799529 60.6
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