Postsynthetic modification of single Pd sites into uncoordinated polypyridine groups of a MOF as the highly efficient catalyst for Heck and Suzuki reactions

Dapeng Dong,^a Zhenghua Li,^a Dedi Liu,^a Naisen Yu,^a Haiyan Zhao, ^a Huiying Chen*^b Jia Liu^a and Dongping Liu*^a

 ^a Liaoning Key Laboratory of Optoelectronic Films and Materials, School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, PR China.
 ^b College of Life Science, Dalian Nationalities University, Dalian 116600, PR China.

E-mail: dongping.liu@dlnu.edu.cn; chy@dlnu.edu.cn

Contents

- (1) Fig. S1 The IR spectra of HoMOF and Pd-HoMOF.
- (2) Fig. S2 IR spectra of HoMOF and Pd-HoMOF demonstrating the two weak Pd–N stretching observed for Pd-HoMOF.
- (3) Fig. S3 The TG curve of HoMOF.
- (4) Fig. S4 The TG curve of PdHoMOF.
- (5) Fig. S5 Side view of one-dimensional chain along the b-axis for compound HoMOF.
- (6) Fig. S6 The XRD patterns after five reaction cycles of PdHoMOF.
- (7) Fig. S7 The ¹H NMR analysis for 2-TriPP-COOH.
- (8) Scheme S1 An illustrative sketch of proposed mechanism of the Suzuki–Miyaura reaction of iodobenzene in the presence of Pd-HoMOF catalyst.
- (9) Table S1 Crystal data and structure refinement for compound HoMOF.
- (10) Table S2 Selected bond lengths (Å) and angles (°) for compound HoMOF.
- (11) **Table S3** Reusability of Pd–HoMOF catalyst in the Heck reaction. Reaction time = 1 h.
- (12) Table S4 Optimization of Suzuki–Miyaura reaction.
- (13) Table S5 Reusability of Pd–HoMOF catalyst in the Suzuki reaction. Reaction time = 1 h.
- (14) The results of GC-MS for the Heck reaction catalyzed by Pd-HoMOF.
- (15) The results of GC-MS for the Suzuki-Miyaura reaction catalyzed by Pd-HoMOF.

Fig. S1 The IR spectra of HoMOF and Pd-HoMOF.

(2)

Fig. S2 IR spectra of HoMOF (black) and Pd-HoMOF (red) demonstrating the two weak Pd-N

stretching observed for Pd-HoMOF.

(4)

Fig. S4 The TG curve of PdHoMOF.

Fig. S5 Side view of one-dimensional chain along the b-axis for compound HoMOF.

(6)

Fig. S6 The XRD patterns after five reaction cycles of Pd-HoMOF.

Fig. S7 The ¹H NMR analysis for 2-TriPP-COOH.

Scheme S1 An illustrative sketch of proposed mechanism of the Suzuki–Miyaura reaction of iodobenzene in the presence of Pd-HoMOF catalyst.

	1
formula	C ₆₆ H ₄₂ HoN ₉ O ₆
Fw	1222.01
crystal system	Monoclinic
Space group	C2/c
<i>a</i> , Å	33.823(2)
<i>b</i> , Å	13.7794(10)
<i>c</i> , Å	12.2450(9)
<i>β</i> , °	109.0973(9)
<i>V</i> , Å ³	5392.8(7)
Ζ	4
$D_{\rm c}$, g/cm ³	1.505
μ (Mo K_{α}), mm ⁻¹	1.532
$ heta_{\min}, \ heta_{\max}$, $^{\circ}$	2.226, 27.484
no. total reflns.	23201
no. uniq. reflns (R_{int})	6113 (0.0278)
no. obs. $[I \ge 2\sigma(I)]$	5684
no. params	373
<i>R</i> 1, <i>wR</i> 2 [I≥2σ(I)]	0.0275, 0.0702
R1,wR2 (all data)	0.0312, 0.0716
GOF	1.083

(9) Table S1. Crystal data and structure refinement for compound HoMOF.

 $R_{1} = \Sigma (|F_{0}| - |F_{C}|) / \Sigma |F_{0}|, wR_{2} = [\Sigma w (|F_{0}| - |F_{C}|)^{2} / \Sigma w F_{0}^{2}]^{1/2}.$

(10) Table S2. Selected bond lengths (Å) and angles (°) for compound HoMOF.

Ho(1)-O(3)	2.3721(18)	Ho(1)-O(1)#1	2.467(2)
Ho(1)-O(3)#1	2.3721(18)	Ho(1)-N(4)	2.475(2)
Ho(1)-O(2)#1	2.416(2)	Ho(1)-N(4)#1	2.475(2)
Ho(1)-O(2)	2.416(2)	Ho(1)-N(5)	2.486(3)
Ho(1)-O(1)	2.467(2)		
O(3)-Ho(1)-O(3)#1	55.40(9)	O(2)-Ho(1)-N(4)	66.86(7)
O(3)-Ho(1)-O(2)#1	120.62(8)	O(1)-Ho(1)-N(4)	118.72(7)
O(3)#1-Ho(1)-O(2)#1	87.01(8)	O(1)#1-Ho(1)-N(4)	74.85(7)
O(3)-Ho(1)-O(2)	87.01(8)	O(3)-Ho(1)-N(4)#1	140.34(7)
O(3)#1-Ho(1)-O(2)	120.62(7)	O(3)#1-Ho(1)-N(4)#1	88.65(6)
O(2)#1-Ho(1)-O(2)	150.07(13)	O(2)#1-Ho(1)-N(4)#1	66.86(7)
O(3)-Ho(1)-O(1)	79.13(7)	O(2)-Ho(1)-N(4)#1	100.10(8)

O(3)#1-Ho(1)-O(1)	74.24(7)	O(1)-Ho(1)-N(4)#1	74.85(7)
O(2)#1-Ho(1)-O(1)	137.58(8)	O(1)#1-Ho(1)-N(4)#1	118.72(7)
O(2)-Ho(1)-O(1)	52.84(7)	N(4)-Ho(1)-N(4)#1	130.14(9)
O(3)-Ho(1)-O(1)#1	74.24(7)	O(3)-Ho(1)-N(5)	152.30(4)
O(3)#1-Ho(1)-O(1)#1	79.12(7)	O(3)#1-Ho(1)-N(5)	152.30(4)
O(2)#1-Ho(1)-O(1)#1	52.84(7)	O(2)#1-Ho(1)-N(5)	75.04(6)
O(2)-Ho(1)-O(1)#1	137.58(8)	O(2)-Ho(1)-N(5)	75.04(6)
O(1)-Ho(1)-O(1)#1	149.87(11)	O(1)-Ho(1)-N(5)	105.07(6)
O(3)-Ho(1)-N(4)	88.65(6)	O(1)#1-Ho(1)-N(5)	105.07(6)
O(3)#1-Ho(1)-N(4)	140.34(7)	N(4)-Ho(1)-N(5)	65.07(5)
O(2)#1-Ho(1)-N(4)	100.10(8)	N(4)#1-Ho(1)-N(5)	65.07(5)

Symmetry transformations used to generate equivalent atoms for 1: #1: -x+1,y,-z+3/2.

(11) **Table S3**. Reusability of Pd–HoMOF catalyst in the Heck reaction. Reaction time = 1 h.

Reaction Runs	1	2	3	4	5
Yield (%)	99	99	99	98.3	98.0

	+ - B(0	$OH)_2 - Cat$	\blacktriangleright		
		Cat			
Entry	Base	Solvent	T(℃)	Time(h)	Yield(%) ^b
1	КОН	EtOH	80	1	25.4
2	КОН	H ₂ O	100	1	18.4
3	КОН	Dioxane	100	1	45
4	K ₂ CO ₃	DMF	100	1	51
5	Cs_2CO_3	DMF	100	1	62.8
6	КОН	DMF	80	1	91.6
7	КОН	DMF	100	1	>99
8	КОН	DMF	100	4	>99
9°	КОН	DMF	100	1	none
10 ^d	КОН	DMF	100	1	90.8

(12) Table S4. Optimization of Suzuki-Miyaura reaction.^a

^aReaction conditions: Ph–I (0.5 mmol), phenylboronic acid (0.75mmol), base (1.5 mmol), Pd– HoMOF (0.4 mol% Pd). ^bYield determined by GC-MS analysis. ^cParent HoMOF as the catalyst. ^dPdCl₂(CH₃CN)₂ as the catalyst (0.4 mol% Pd).

 Reaction Runs
 1
 2
 3
 4
 5

 Yield (%)
 99
 99
 99
 99
 99

(13) **Table S5**. Reusability of Pd–HoMOF catalyst in the Suzuki reaction. Reaction time = 1 h.

- (14) The results of GC-MS for the Heck reaction catalyzed by Pd-HoMOF
- 1. The results of GC (up) and MS (down) for iodobenzene and methyl acrylate

2. The results of GC (up) and MS (down) for 4-methyliodobenzene and methyl acrylate

3. The results of GC (up) and MS (down) for 4-iodoacetophenone and methyl acrylate

4. The results of GC (up) and MS (down) for 4-iodonitrobenzene and methyl acrylate

5. The results of GC (up) and MS (down) for iodobenzene and styrene

6. The results of GC (up) and MS (down) for 4-methyliodobenzene and styrene

7. The results of GC (up) and MS (down) for bromobenzene and methyl acrylate

9. The results of GC (up) and MS (down) for 4-bromobenzaldehyde and methyl acrylate

10. The results of GC for chlorobenzene and methyl acrylate

11. The results of GC for 4-methylchlorobenzene and methyl acrylate

12. The results of GC (up) and MS (down) for 4-chlorobenzaldehyde and methyl acrylate

(15) The results of GC-MS for the Suzuki-Miyaura reaction catalyzed by Pd-HoMOF

1. The results of GC (up) and MS (down) for iodobenzene and phenylboronic acid

2. The results of GC (up) and MS (down) for 4-methyliodobenzene and phenylboronic acid

3. The results of GC (up) and MS (down) for 4-methoxyiodobenzene and phenylboronic acid

4. The results of GC (up) and MS (down) for 4-iodoacetophenone and phenylboronic acid

5. The results of GC (up) and MS (down) for 4-iodonitrobenzene and phenylboronic acid

6. The results of GC (up) and MS (down) for bromobenzene and phenylboronic acid

7. The results of GC (up) and MS (down) for 4-methylbromobenzene and phenylboronic acid

8. The results of GC (up) and MS (down) for 4-methoxybromobenzene and phenylboronic acid

9. The results of GC (up) and MS (down) for 4-bromobenzaldehyde and phenylboronic acid

10. The results of GC (up) and MS (down) for 4-bromoacetophenone and phenylboronic acid

11. The results of GC (up) and MS (down) for chlorobenzene and phenylboronic acid

13. The results of GC (up) and MS (down) for 4-chlorobenzaldehyde and phenylboronic acid

