Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information

Extended lead(II) architectures engineered via tetrel bonding interactions

Ghodrat Mahmoudi,*^a Ennio Zangrando,^b Mariusz P. Mitoraj,*^c Atash V. Gurbanov,^d Fedor I.

Zubkov,^e Maryam Moosavifar,^a Irina A. Konyaeva,^{f,g} Alexander M. Kirillov^{*h} and Damir A. Safin^{*i}

^aDepartment of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh, Iran.

E-mail: mahmoudi_ghodrat@yahoo.co.uk

^bDepartment of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy

^cDepartment of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, R.Ingardena 3, 30-060 Cracow, Poland. E-mail: mitoraj@chemia.uj.edu.pl

^dDepartment of Chemistry, Baku State University, Z. Khalilov Str. 23, AZ1148, Baku, Azerbaijan

^e Organic Chemistry Department, Faculty of Science, Peoples' Friendship University of Russia (RUDN University),

6 Miklukho-Maklaya St., Moscow, 117198, Russian Federa

^fLimited Liability Company «NIOST», Kuzovlevski trakt 2, 634067, Tomsk, Russian Federation ^gDepartment of Technology of Organic Substances and Polymer Materials, National Research Tomsk Polytechnic University, Lenin ave. 43, 634050 Tomsk, Russian Federation

^hCentro de Química Estrutural, Complexo I, Instituto Superior Técnico,Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal. E-mail: kirillov@ist.utl.pt

¹Institute of Chemistry, University of Tyumen, Perekopskaya Str. 15a, 625003 Tyumen, Russian Federation. Email: damir.a.safin@gmail.com, d.a.safin@utmn.ru

Fig. S1. 2D and decomposed 2D fingerprint plots of observed contacts for 3.

Fig. S2. (Top) Cluster model of **3** together with the fragmentation pattern applied in the ETS-NOCV analysis. (Bottom) The overall deformation density $\Delta \rho_{orb}$ with the corresponding orbital interaction energies ΔE_{orb} as well as the QTAIM molecular graph demonstrating formation of NH-O, CH-O and CH-HC charge delocalizations.

	Pb–ONO ₂	Pb–OC(O)CH ₃		
$\Delta \boldsymbol{E}_{int}$	-540.49	-588.06		
$\Delta oldsymbol{\mathcal{E}}_{elstat}$	-519.27	-549.00		
$\Delta oldsymbol{E}_{orb}$	-147.31	-168.54		
$\Delta oldsymbol{\mathcal{E}}_{dispersion}$	-1.46	-1.20		
$\Delta oldsymbol{\mathcal{E}}_{Pauli}$	127.56	130.68		
$\Delta \boldsymbol{E}_{int} = \Delta \boldsymbol{E}_{elstat} + \Delta \boldsymbol{E}_{orb} + \Delta \boldsymbol{E}_{dispersion} + \Delta \boldsymbol{E}_{Pauli}$				

Fig. S3. (Top) Molecular electrostatic potentials for NO_3^- and CH_3COO^- (DFT/ADF/BLYP-D3/TZP). (Bottom) The ETS-NOCV results describing bonding between Pb^{II} and the corresponding anion.

	1	2
Pb–N _{2-Py}	2.679(2)	2.732(6)
Pb–N _{3-Py}	2.695(2)	2.894(7)
Pb–N _{imine}	2.602(2)	2.659(6)
Pb-O _{C=0}	2.679(2)	2.499(5)
$Pb-O_{nitrate/methoxide}$	2.504(2), 2.640(2), 2.778(2), 2.826(2)	2.187(5)
Pb…O _{tetrel}	3.117(2)	—

Table S1. Selected bond lengths (Å) and angles (°) for ${\bf 1}$ and ${\bf 2}$

Table S2. Selected bond lengths (Å) and angles (°) for 3 and 4

	3	4	
		Pb(1)	Pb(2)
Pb–N _{2-Py}	2.492(10)	2.535(3)	2.563(4)
Pb–N _{imine}	2.563(11)	2.480(3)	2.700(4)
Pb-O _{C=0}	2.619(7)	2.445(3)	2.599(3)
Pb–O _{nitrate/acetate}	2.430(13), 2.655(11), 2.755(10)	2.338(3), 2.787(3)	2.552(3), 2.613(3), 2.626(3), 2.729(4), 2.916(3)
Pb…O _{tetrel}	3.061(11), 3.091(13), 3.275(13), 3.353(13)	2.995(3), 3.518(3)	_
$Pb \cdots N_{tetrel}$	-	3.143(4)	-

Table S3. Classic hydrogen bond lengths (Å) and angles (°) for 1, 3 and 4

	D–H…A	<i>d</i> (D–H)	<i>d</i> (H…A)	<i>d</i> (D…A)	∠(DHA)
1 ^{<i>a</i>}	N(3)–H(3N)…O(5)	0.82(3)	2.00(3)	2.787(3)	160(3)
3 ^{<i>b</i>}	N(3)–H(3N)…O(5) ^{#1}	0.86	2.45	3.025(16)	124
	N(3)–H(3N)…O(6) ^{#2}	0.86	2.24	3.044(16)	155
4 ^c	N(4)–H(4N)…O(7)	0.88	1.98	2.837(5)	165

^{*a*}Symmetry transformations used to generate equivalent atoms: x, -1/2 - y, 1/2 + z.

^bSymmetry transformations used to generate equivalent atoms: #1: 1 - x, 1 - y, 1 - z; #2: -x, 1 - y, 1/2 + z. ^cSymmetry transformations used to generate equivalent atoms: 1 - x, 1/2 + y, 3/2 - z.

Table S4. $\pi \cdots \pi$ interaction distances (Å) and angles (°) for **1** and **2**^{*a*}

Complex	Cg(/)	Cg(J)	d[Cg(I)–Cg(J)]	α	β	γ	slippage
1 ^b	Cg(1)	Cg(1) ^{#1}	3.5258(15)	0.00(13)	13.9	13.9	0.846
	Cg(2)	Cg(2) ^{#2}	3.7395(15)	0.02(12)	28.0	28.0	1.757
	Cg(2)	Cg(2) ^{#3}	3.6520(15)	0.02(12)	25.0	25.0	1.544
2 ^{<i>c</i>}	Cg(4)	Cg(5) ^{#1}	3.707(5)	10.5(4)	19.8	26.3	1.256
	Cg(4)	Cg(5) ^{#2}	3.898(5)	10.5(4)	33.7	26.7	2.164
	Cg(5)	Cg(4) ^{#3}	3.898(5)	10.5(4)	26.7	33.7	1.754
	Cg(5)	Cg(4) ^{#4}	3.707(5)	10.5(4)	26.3	19.8	1.642

^aCg(*I*)–Cg(*J*): distance between ring centroids; α : dihedral angle between planes Cg(*I*) and Cg(*J*); β : angle Cg(*I*) \rightarrow Cg(*J*) vector and normal to plane *I*; γ : angle Cg(*I*) \rightarrow Cg(*J*) vector and normal to plane *J*; slippage: distance between Cg(*I*) and perpendicular projection of Cg(*J*) on ring *I*.

^bSymmetry transformations used to generate equivalent atoms: #1 - x, -y, -z; #2 1 - x, -1 - y, 1 - z; #3 1 - x, -y, 1 - z. Cg(1): N(1)–C(8)–C(9)–C(10)–C(11)–C(12), Cg(2): N(4)–C(3)–C(2)–C(6)–C(5)–C(4).

^cSymmetry transformations used to generate equivalent atoms: #1 - 1 + x, -1 + y, z; #2 x, -1 + y, z; #3 x, 1 + y, z; #4 1 + x, 1 + y, z. Cg(4): N(1)–C(8)–C(12)–C(11)–C(10)–C(9), Cg(5): N(4)–C(5)–C(6)–C(7)–C(8)–C(9).