Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Trans- A₂B – Corrole Bearing 2,3-di(2-pyridyl)quinoxaline(DPQ) / Phenothiazine Moiety's:

Synthesis, Characterization, Electrochemistry and Photophysics

Jaipal Kandhadi,^a Wei-Cong Yan,^a Fan Cheng,^b Hui Wang,^{*a} and Hai-Yang Liu^{*b}

^aState Key Laboratory of Optoelectronics Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China.

^bDepartment of Chemistry, Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China.

	Table of Contents	Page No		
Table S1	Singlet excited state properties of F10C-PTZ and F10C-DPQ dyads by B3LYP method in			
	dichloromethane solvent.			
Table S2	$I_{(dyad)}/I_{(ref)}$ values for F10C-PTZ and F10C-DPQ w.r.t. reference compound "tpfc" , when			
	excited at 420 nm.			
Fig. S1	HRMS Spectrum of F10C-DPQ dyad.	2		
Fig. S2	HRMS Spectrum of F10C-PTZ dyad.	3		
Fig. S3	ESI-MS Spectrum of DPQ-Br (6-bromo-2,3-di(pyridin-2-yl)quinoxaline).	3		
Fig. S4	ESI-MS Spectrum of DPQ-CHO (4-(2,3-di(pyridin-2-yl)quinoxalin-6-yl)benzaldehyde).	4		
Fig. S5	1 H -NMR spectrum of DPQ (2,3-di(pyridin-2-yl)quinoxaline) in CDCl .	4		
Fig. S6	¹³ C -NMR spectrum of DPQ (2,3-di(pyridin-2-yl)quinoxaline) in CDCI .	5		
Fig. S7	¹ H - NMR spectrum of DPQ-Br (6-bromo-2,3-di(pyridin-2-yl)quinoxaline) in CDCl .	5		
Fig. S8	¹³ C-NMR spectrum of DPQ-Br (6-bromo-2,3-di(pyridin-2-yl)quinoxaline) in CDCI .	6		
Fig. S9	¹ H -NMR spectrum of DPQ-CHO (4-(2,3-di(pyridin-2-yl)quinoxalin-6-yl)benzaldehyde) in CDCl .	6		
Fig. S10	¹³ C -NMR spectrum of DPQ-CHO (4-(2,3-di(pyridin-2-yl)quinoxalin-6-yl)benzaldehyde) in CDCl .	7		
Fig. S11	¹ H -NMR spectrum of F10C-DPQ dyad in CDCl .	7		
Fig. S12	¹⁹ F -NMR spectrum of F10C-DPQ dyad in CDCl .	8		
Fig. S13	¹³ C -NMR spectrum of F10C-DPQ dyad in CDCl .	8		
Fig. S14	¹ H -NMR spectrum of F10C-PTZ dyad in CDCl .	9		
Fig. S15	¹³ C -NMR spectrum of F10C-PTZ dyad in CDCI	9		
Fig. S16	¹⁹ F -NMR spectrum of F10C-PTZ dyad in CDCl .3	10		
Fig. S17	Theoretical absorption spectra of F10C-PTZ and F10C-DPQ dyads by using B3LYP method PCM model in dichloromethane solvent.	10		
Fig. S18	Emission spectra (a) & (b) and Excitation spectra (c) & (d) of the F10C-PTZ dyad in toluene and DMF, free energy change for energy transfer in different solvents were shown in bottom	11		
Fig. S19	Emission spectra of F10C-PTZ and F10C-DPQ dyads in Acetonitrile and dimethylformamide (λ_{ex} = 420 nm and O.D. of all the samples were 0.05).	12		
Fig. S20	Fluorescence decay of the pristine corrole (5,10,15tris(pentafluorophenyl)corrole) in four different solvents (λ_{ex} = 420 nm) and λ_{em} monitored at their respective wavelengths in different solvents.	12		
Fig. S21	Energy level diagram of the both the dyads in CH_2Cl_2	13		

Sample	$a\lambda_{max}$	bf	٤eV	% of Molecular Orbital Contribution
F10C-PTZ	306	0.073	4.04	H-2 →L+2 (26%), H-1→L+2 (48%), H-11→LUMO (6%), H-1→L+3 (3%), HOMO→L+5 (7%)
	390	1.166	3.17	H-2→L+1 (61%), H-1→L+1 (18%), H-1→LUMO (4%), HOMO→LUMO (8%).
	399	0.84	3.10	H-2→LUMO (18%), H-1→L+1 (43%), HOMO→L+1 (16%)H-1→LUMO (7%).
	449	0.56	2.75	H-2→LUMO (10%), H-2→L+1 (13%), H-1→L+1 (26%), HOMO→L+1 (44%)
	590	0.279	2.10	HOMO→LUMO (86%), H-2→L+1 (3%), H-1→LUMO (3%), H-1→L+1 (6%)
F10C-DPQ	329	0.063	3.76	HOMO →L+4 (86%), H-8→LUMO (4%), H-6 →LUMO (3%)
	352	0.158	3.51	H-5 →L+1 (49%), H-3→L+1 (14%), H-2→L+1 (19%), H-14→L+1 (4%), H-5→L+2 (4%).
	393	1.024	3.15	H-1→L+2 (78%), HOMO→LUMO (11%), H-4→LUMO (2%), H-2→LUMO (3%)
	416	1.421	2.98	H-1→LUMO (29%), HOMO→L+2 (58%), HOMO→L+3 (5%)
	569	0.332	2.17	H-1→L+2 (11%), HOMO→LUMO (78%), H-1→LUMO (5%), HOMO→L+2 (3%)

 Table S1.
 Singlet excited state properties of F10C-PTZ and F10C-DPQ dyads by B3LYP method in dichloromethane solvent.

^a Theoretical absorbance in nm, ^b Oscillator strength, ^c Excited state energy in eV.

Table S2. I(dya)/I (ref) values for	F10C-PTZ and F10C-DPQ w.r	t. reference compound "	tpfc", when excited at 420 nm
-----------------	----------------------	---------------------------	-------------------------	-------------------------------

	CH2Cl2	PhMe	MeCN	DMF
F10C-PTZ	0.29	0.57	0.40	0.38
F10C-DPQ	0.39	0.55	0.0060	0.0034

Fig. S1: HRMS Spectrum of F10C-DPQ dyad.

Fig. S2: HRMS Spectrum of F10C-PTZ dyad.

Fig. S3: ESI-MS Spectrum of DPQ-Br (6-bromo-2,3-di(pyridin-2-yl)quinoxaline).

Fig. 54: ESI-MS Spectrum of DPQ-CHO (4-(2,3-di(pyridin-2-yl)quinoxalin-6-yl)benzaldehyde).

Fig. S5: 1 H -NMR spectrum of DPQ (2,3-di(pyridin-2-yl)quinoxaline) in CDCl $_{3}$

Fig. S6: ¹³C -NMR spectrum of DPQ (2,3-di(pyridin-2-yl)quinoxaline) in CDCl ₃

Fig. S7: ¹H -NMR spectrum of DPQ-Br (6-bromo-2,3-di(pyridin-2-yl)quinoxaline) in CDCl .₃

Fig. S8: ¹³C -NMR spectrum of DPQ-Br (6-bromo-2,3-di(pyridin-2-yl)quinoxaline) in CDCl .₃

Fig. S9: ¹H -NMR spectrum of DPQ-CHO (4-(2,3-di(pyridin-2-yl)quinoxalin-6-yl)benzaldehyde) in CDCl .₃

Fig. S10: ¹³C -NMR spectrum of DPQ-CHO (4-(2,3-di(pyridin-2-yl)quinoxalin-6-yl)benzaldehyde) in CDCl .3

Fig. S11: ¹H -NMR spectrum of F10C-DPQ dyad in CDCl ₃

Fig. S12: ¹⁹F -NMR spectrum of F10C-DPQ dyad in CDCl ₃

Fig. S13: ¹³C -NMR spectrum of F10C-DPQ dyad in CDCl ₃

Fig. S14: ¹H -NMR spectrum of F10C-PTZ dyad in CDCl ₃

Fig. S15: ¹³C -NMR spectrum of F10C-PTZ dyad in CDCl ₃

Fig. S16: ¹⁹F -NMR spectrum of F10C-PTZ dyad in CDCl ₃

Fig. S17: Theoretical absorption spectra of F10C-PTZ and F10C-DPQ dyads by using B3LYP method PCM model in dichloromethane solvent.

Fig. S18: Emission spectra (a) & (b) and Excitation spectra (c) & (d) of the F10C-PTZ dyad in toluene and DMF, free energy change for energy transfer in different solvents were shown in bottom.

Fig. S19: Emission spectra of F10C-PTZ and F10C-DPQ dyads in Acetonitrile and dimethylformamide (λ_{ex} = 420 nm and O.D. of all the samples were 0.05).

Fig. S20: Fluorescence decay of the pristine corrole (5,10,15tris(pentafluorophenyl)corrole) in four different solvents (λ_{ex} = 420 nm and λ_{em} monitored at their respective wavelengths in different solvents.

Fig. S21: Energy level diagram of the both the dyads in CH_2Cl_2 . the singlet state energy of the F10C-DPQ was assumed to 3.04 eV, due to lack of emission of pristine DPQ, we cannot overlap the absorption and emission of the DPQ, but we have estimated the value according to previous reports reference - 22 in the main text.