High-Selective Room-Temperature NO₂ Sensors Based on a Fluoroalkoxy-substituted Phthalocyanine

Qiqi Sun,‡ Weigang Feng,‡ Pu Yang, Guoqiang You, Yanli Chen*

School of Science, China University of Petroleum (East China), Qingdao, 266580, China. E-mail: yanlichen@upc.edu.cn

Supplementary Information

Contents:

Fig. S1 MALDI-TOF mass spectrum of H₂[Pc(OCH₂(CF₂)₆CF₃)₄]

Fig. S2 The electron absorption spectra of H₂[Pc(OCH₂(CF₂)₆CF₃)₄] in different concentrations of THF solution (A), and the working curves at different wavelengths (B).

Fig. S3 Polarized UV–vis spectra of H₂[Pc(OCH₂(CF₂)₆CF₃)₄] in the DC film (A) and the VD film (B) on quartz substrate.

Table S1. The orientation angle of the phthalocyanine ring determined from polarized UV–vis absorbance of the DC film and the VD film.

Fig. S4 The geometry-optimized molecular dimension of H₂[Pc(OCH₂(CF₂)₆CF₃)₄]

Fig. S5 The corresponding section analysis of the nanoparticles on the VD film.

Fig. S6 The time-dependent current plot of a saturated exposure/rest cycle as a function of the 0.5 ppm NO₂ concentration in N₂ atmosphere for the VD film

Fig. S7 The time-dependent current plots to NH₃ and H₂S at varied concentration for the DC film of H₂[Pc(OCH₂(CF₂)₆CF₃)₄] (A, B) and the VD film of H₂[Pc(OCH₂(CF₂)₆CF₃)₄] (C, D), respectively.
Fig. S1 MALDI-TOF mass spectrum of $\text{H}_2[\text{Pc(OCH}_2\text{(CF}_2\text{)}_6\text{CF}_3)_4]$.

Fig. S2 The electron absorption spectra of $\text{H}_2[\text{Pc(OCH}_2\text{(CF}_2\text{)}_6\text{CF}_3)_4]$ in different concentrations of THF solution (A), and the working curves at different wavelengths (B).
Fig. S3 Polarized UV-vis spectra of H$_2$[Pc(OCH$_2$(CF$_2$)$_6$CF$_3$)$_4$] in the DC film (A) and the VD film (B) on quartz substrate.

Table S1. The orientation angle of the phthalocyanine ring determined from polarized UV–vis absorbance of the DC film and the VD film.

<table>
<thead>
<tr>
<th>Film Type</th>
<th>$A_{0//}$</th>
<th>$A_{0\perp}$</th>
<th>D_0 ($A_{0//}/A_{0\perp}$)</th>
<th>$A_{45//}$</th>
<th>$A_{45\perp}$</th>
<th>D_{45} ($A_{45//}/A_{45\perp}$)</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC film</td>
<td>0.390</td>
<td>0.335</td>
<td>1.164</td>
<td>0.535</td>
<td>0.420</td>
<td>1.274</td>
<td>47\degree</td>
</tr>
<tr>
<td>VD film</td>
<td>0.136</td>
<td>0.122</td>
<td>1.115</td>
<td>0.146</td>
<td>0.134</td>
<td>1.090</td>
<td>55\degree</td>
</tr>
</tbody>
</table>

Fig. S4 The geometry-optimized molecular dimension of H$_2$[Pc(OCH$_2$(CF$_2$)$_6$CF$_3$)$_4$].
Fig. S5 The corresponding section analysis of the nanoparticles on the VD film.

Fig. S6 The time-dependent current plot of a saturated exposure/rest cycle as a function of the 0.5 ppm NO₂ concentration in N₂ atmosphere for the VD film.
The time-dependent current plots to NH$_3$ and H$_2$S at varied concentration for the DC film of H$_2$[Pc(OCH$_2$(CF$_2$)$_6$CF$_3$)$_4$] (A, B) and the VD film of H$_2$[Pc(OCH$_2$(CF$_2$)$_6$CF$_3$)$_4$] (C, D), respectively.