Supporting information

## pH and molecular weight dependence of auric acid

## reduction by polyethylenimine and the gene

## transfection efficiency of the cationic gold

## nanoparticles thereof

O. Cavuslar,<sup>a</sup> C. Celaloglu,<sup>b</sup> F. D. Duman,<sup>b</sup> Y. U. Konca,<sup>b</sup> M. B. Yaqci<sup>c</sup> and

H. Yaqci Acar<sup>a,b,c</sup>

<sup>a</sup>Koc University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey; E-mail: fyagci@ku.edu.tr <sup>b</sup>Koc University, Department of Chemistry, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey.

<sup>c</sup>Koc University, KUYTAM, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey.



**Fig. S1** From left to right pictures of PEI25-Au synthesized at pH 9, 8, 7, 5.2, 3.6 and control (no pH adjustment) a) after being washed following the synthesis step and b) after 1 year storage at room temperature.



**Fig. S2** Pictures of PEI10-Au, PEI1.8-Au and PEI0.6-Au after synthesis (no pH adjustment).



**Fig. S3** TEM images of a) PEI1.8-Au, b) PEI1.8-Au synthesized at pH 9, c) PEI10-Au, d) PEI25-Au and e) PEI25-Au synthesized at pH 9.



**Fig. S4** Thermal gravimetric analysis (TGA) of a) PEI1.8-Au synthesized at pH 9, b) PEI25-Au synthesized at pH 9. Weight loss at 100 °C is due to the water loss during the isothermal step.

**Table S1.** Binding energies of N1s, C1s and Au 4f core level in PEI25-Au synthesized at pH 9.5 and 3.5.

|           | Binding energies (eV) |                             |        |        |                 |       |
|-----------|-----------------------|-----------------------------|--------|--------|-----------------|-------|
|           | N 1s                  |                             | C 1s   |        | Au 4f           |       |
|           | Free<br>amines        | Bound and/or reduced amines | C-N    | C=N    | Au <sup>0</sup> | Au⁺   |
| At pH 9.5 | 399.09                | 400.23                      | 284.86 | 287.21 | 83.84           | 84.86 |
| At pH 3.5 | 399.02                | 400.63                      | 285.32 | 287.88 | 83.06           | 84.08 |

Table S2. Atomic ratio of C, N, Au in the PEI25-Au synthesized at different pH values

| Atomic Ratio                         | рН 9.5 | рН 3.5 |
|--------------------------------------|--------|--------|
| N <sub>bound</sub> /N <sub>tot</sub> | 0.64   | 0.09   |
| C=N/C <sub>tot</sub>                 | 0.15   | 0.065  |
| Au <sup>0</sup> /Au <sub>tot</sub>   | 0.80   | 0.71   |
| N/Au                                 | 428    | 291    |
| N <sub>400</sub> /Au <sub>83</sub>   | 342.50 | 40.60  |



**Fig. S5** Dose dependent viability of HEK293T cells treated with bPEI 25kDa and bPEI 1.8kDa as measured by MTT assay after 24 h incubation with the polymer. Each column represents the mean with error bars representing  $\pm$ SD (*n*=3), p<0.05. \* shows statistically significant difference from the control, and \*\* shows statistically significant difference from the dose.



**Fig. S6** Inverted fluorescence microscopy images of HEK 293T cells after 48 h posttransfection with pMax-GFP vector by PEI25-Au nanoparticles at different N/P ratios. pDNA was used at fixed concentration (2.33  $\mu$ g/mL). Cell nuclei were stained with DAPI (blue color).



**Fig. S7** Inverted fluorescence microscopy images of HEK 293T cells after 48 h posttransfection with pMax-GFP vector by PEI1.8-Au nanoparticles at different N/P ratios. pDNA was used at fixed concentration (2.33  $\mu$ g/mL). Blue color is DAPI staining showing cell nuclei.