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Figure S1: Potentiometric titration curves of solutions containing L1 (1.87mM) (A) and L3
 (2.33mM) 

(B), with 0 and 1 equivalent of MgCl2, CaCl2, MnCl2, ZnCl2 and CuCl2. I = 0.15M NaCl, 298K. 

 

 

 

 

Figure S2. UV-visible spectra recorded in a solution containing 2.63 mM Cu2+ and 2.63 mM L1 at 

increasing concentrations of H+ (from 0.01362 to 0.9852 M) 25°C, 1.0 M NaCl.  
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Figure S3. pH-dependent relaxivities (blue dots) measured in a solution containing equimolar 

quantities of Mn2+ and L2 (20 MHz, 25 °C) and species distribution curves (solid lines) calculated by 

using the stability constants presented in Table 2 of the manuscript.   
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Scheme S1. Structure of ENOTA 

  



Equations used for the treatment of the relaxometric data 

17
O NMR data have been fitted according to the Swift and Connick equations [1]. The 

reduced transverse 
17

O relaxation rates, 1/T2r, have been calculated from the measured 

relaxation rates 1/T2 of the paramagnetic solutions and from the relaxation rates 1/T2A of the 

diamagnetic reference: 
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m is determined by the hyperfine or scalar coupling constant, AO/ħ , where B represents the 

magnetic field, S is the electron spin and gL is the isotropic Landé g factor (Equation (S2)). 
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The 
17

O transverse relaxation rate is mainly determined by the scalar contribution, 1/T2sc, and 

it is given by Equation (S3). 
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The exchange rate, kex, (or inverse binding time,m) of the inner sphere water molecule is 

assumed to obey the Eyring equation (Equation (S4)) where S
‡
 and H

‡
 are the entropy and 

enthalpy of activation for the exchange, and 
298

kex is the exchange rate at 298.15 K. 
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For the fit of the 
17

O T2 data, we used an exponential function to treat the temperature 

dependency of 1/T1e: 
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The proton relaxivities (normalized to 1 mM Mn(II) concentration) originate from inner- and 

outer-sphere contributions (Equation (S6)): 
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The inner-sphere term is given by Equation (S7), where q is the number of inner-sphere water 

molecules. 
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In the longitudinal relaxation rate of inner sphere water protons, 1/T1m
H
, the dipolar 

contribution dominates (Equation (S8)): 
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Here rMnH is the effective distance between the Mn
2+

 electron spin and the water protons, I is 

the proton resonance frequency, diH is given by Eq. 9, where RH is the rotational correlation 

time of the Mn(II)–Hwater vector: 
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The electronic relaxation is mainly governed by modulation of the transient zero-field 

splitting, and for the electron spin relaxation rates, 1/T1e and 1/T2e, McMachlan has developed 

Equations (S11)–(S13)
 
which were used in the fit of the NMRD data [2]: 
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where 
2
 is the trace of the square of the transient zero-field-splitting (ZFS) tensor, v is the 

correlation time for the modulation of the ZFS with the activation energy Ev, and s is the 

Larmor frequency of the electron spin. 

 

The outer-sphere contribution to the overall relaxivity is described by Equation (S14), where 

NA is the Avogadro constant, and Jos is a spectral density function (Equation (S15)). 
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The diffusion coefficient for the diffusion of a water proton away from a Mn(II) complex, 

DMnH, obeys the exponential temperature dependence described by Equation (S16), with 

activation energy EMnH: 
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