Two Luminescent Transition-Metal–Organic Frameworks with Predesigned Ligand as Highly Sensitive and Selective Iron(III) Sensors

Jian Zhang, Lili Zhao, Yinxia Liu, Mingyue Li, Gang Li* and Xiangru Meng*

College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China

Supporting Information

*To whom correspondence should be addressed.

E-mail: gangli@zzu.edu.cn & mxr@zzu.edu.cn

Tel: (+86) 371-67781764.

Fax: (+86) 371-67781764.

Table S1. Selected bond distances (Å) and angles (°) for 1

Cd(1)-N(1)	2.275(2)	Cd(1)-N(3)#1	2.306(2)
Cd(1)-N(2)	2.329(3)	Cd(1)-O(1)	2.343(2)
Cd(1)-O(2)#2	2.387(2)	Cd(1)-O(4)#1	2.411(2)
N(1)-Cd(1)-N(2)	94.34(9)	O(2)#2-Cd(1)-O(4)#1	78.66(8)
N(3)#1-Cd(1)-N(2)	96.28(9)	O(1)-Cd(1)-O(4)#1	88.46(8)
N(1)-Cd(1)-O(1)	73.46(8)	N(2)-Cd(1)-O(4)#1	162.83(8)
N(3)#1-Cd(1)-O(1)	86.86(8)	N(3)#1-Cd(1)-O(4)#1	71.51(8)
N(2)-Cd(1)-O(1)	103.22(9)	N(1)-Cd(1)-O(4)#1	101.11(8)
N(1)-Cd(1)-O(2)#2	109.27(8)	O(1)-Cd(1)-O(2)#2	167.11(8)
N(3)#1-Cd(1)-O(2)#2	88.58(8)	N(2)-Cd(1)-O(2)#2	89.25(9)

Symmetry codes: #1 x, -y+1/2, z-1/2; #2 -x+1, y+1/2, -z+1/2.

			0			
Table S2.	Selected b	oond dist	ances (Å)	and ar	igles (°)) for 2 .

Zn(1)-O(1)#1	2.141(3)	Zn(1)-O(1)	2.140(3)
Zn(1)-N(2)#2	2.160(5)	Zn(1)-N(3)#1	2.163(3)
Zn(1)-N(3)	2.163(3)	Zn(1)-N(1)	2.185(5)
O(1)-Zn(1)-O(1)#1	179.00(17)	O(1)#1-Zn(1)-N(2)#2	90.50(9)
O(1)-Zn(1)-N(2)#2	90.50(9)	O(1)-Zn(1)-N(3)#1	100.23(14)
O(1)#1-Zn(1)-N(3)#1	79.71(14)	N(2)#2-Zn(1)-N(3)#1	93.64(9)
O(1)-Zn(1)-N(3)	79.71(14)	O(1)#1-Zn(1)-N(3)	100.23(14)
N(2)#2-Zn(1)-N(3)	93.64(9)	N(3)#1-Zn(1)-N(3)	172.71(19)
O(1)-Zn(1)-N(1)	89.50(9)	O(1)#1-Zn(1)-N(1)	89.50(9)
N(2)#2-Zn(1)-N(1)	180.0	N(3)#1-Zn(1)-N(1)	86.36(9)
N(3)-Zn(1)-N(1)	86.36(9)		

Symmetry codes: #1 x, -y+1, -z+1; #2 x-1, y, z.

Compounds	Quenching Efficiency	Reference	
An azaindole based schiff base AzIm	75%	1	
micrometer-sized phase of [Tb(TAIP)(DMF) ₂]	87%	2	
copillar[5]arene PF5	88.4%	3	
Tyloxapol (one kind of water soluble oligomer)	89%	4	
$[Zn_5(hfipbb)_4(trz)_2(H_2O)_2]$	96.60%	5	
Fluorescent conjugated polymer PFCA	99%	6	
[(CH ₃) ₂ NH ₂]·[Tb(bptc)]·xsolvents	99.06%	7	
[Cd(<i>p</i> -CNPhHIDC)(4,4 ⁻ -bipy) _{0.5}] _n (1)	92.6	This work	
$[Zn(p-CNPhHIDC)(4,4'-bipy)]_n$ (2)	88.5	This work	

Table S3. The quenching efficiency of sensors for Fe $^{3+}$

Compounds	solvents	K _{sv} (M ⁻¹)	Ref.
Rhodamine	CH ₃ CN	9.75×10^{2}	8
Gd ₆ (L) ₃ (HL) ₂ (H ₂ O) ₁₀	water	7.89×10^{2}	9
Eu ₂ (MFDA) ₂ (HCOO) ₂ (H ₂ O) ₆	DMF	1.58×10^{3}	10
BUT-14	water	2.17×10^{3}	11
Tb-DSOA	water	3.54×10^{3}	12
EuL ₃	water	4.10×10^{3}	13
Bis(rhodamine)-2	CH ₃ CN	5.10×10^{3}	14
Eu ³⁺ @MIL-53-COOH (Al)	water	5.12×10^{3}	15
Bis(rhodamine)-1	CH ₃ CN	7.50×10^{3}	16
Eu(atpt) _{1.5} (phen)(H ₂ O)	ethanol	7.60×10^{3}	17
Eu-BPDA	water	1.25×10^{4}	18
La(TPT)(DMSO) ₂	ethanol	1.36×10^{4}	19
BUT-15	water	1.66×10^{4}	11
Eu-HODA	water	2.09×10^{4}	20
$\{[Eu_2K_2(dcppa)_2(H_2O)_6]\cdot mH_2O\}_n$	water	4.3×10^{4}	21
Benzimidazole-based sensor	water	8.51×10^{4}	22
[Cd(<i>p</i> -CNPhHIDC)(4,4´-bipy) _{0.5}] _n (1)	water	1.99×10^{3}	This work
$[Zn(p-CNPhHIDC)(4,4'-bipy)]_n (2)$	water	1.37×10^{3}	This work

Table S4. Comparison of K_{sv} values of **1** and **2** towards Fe³⁺ ion with other compounds

Table S5 The ICP results of complexes 1 and 2 after treated with Fe³⁺ for 12 h $\,$

Complex	1	2	
Initial value / Fe ³⁺	$5.0 \times 10^{-3} \text{ mol/L}$	$5.0 \times 10^{-3} \text{ mol/L}$	
After treated with Fe ³⁺ for 12 h	$3.23 \times 10^{-3} \text{ mol/L}$	$3.75 \times 10^{-3} \text{ mol/L}$	

Table S6 The EA results of complexes 1 and 2 after treated with Fe^{3+} for 12 h

Complex	1		2			
Original samples	C%	H%	N%	C%	H%	N%
	45.68	2.01	12.31	55.42	2.63	14.68
After treated with Fe ³⁺ for 12 h	C%	H%	N%	C%	H%	N%
	43.12	2.28	11.72	50.29	2.75	13.36

Fig. S1 1D chain of 1 supported by imidazole dicarboxylate ligands

Fig. S2. PXRD patterns of 1 (a) and 2 (b) for the simulated, as-synthesized and after water treated samples.

Fig. S3 Thermal gravimetric analyses of complexes 1 and 2.

(a)

Fig. S4. PXRD patterns of 1 (a) and 2 (b) immersed in different pH solutions

(a)

Fig. S5. PXRD patterns of 1 (a) and 2 (b) immersed in different solvents at room temperature.

Fig. S6 Solid-state luminescence spectra of free *p*-CNPhH₃IDC ligand and complexes **1** and **2** at room temperature.

Fig. S7 The colors of $M^{n+}-1$ (a) or -2 (b) samples at room temperature under the excitation of 365 nm.

(a)

Fig. S8 Photoluminescence intensity of complex **1** (a) (or **2** (b)) treated by different anions (0.01 M) in aqueous solutions.

Fig. S9 Photoluminescence intensity of complex **1** (a) (or **2** (b)) treated by different Fe(III) salts (0.01 M) in aqueous solutions.

(a)

(b)

Fig. S10 Solid-state luminescence spectra of 1 (a) and 2 (b) treated with different pH aqueous solutions

(a)

(b)

Fig. S11 PXRD patterns of simulated, as-synthesized, 1 (a) or 2 (b) immersed in aqueous solution of Fe(NO₃)₃.

(a)

(b)

Fig. S12 IR spectra of 1 (a) or 2 (b) before and after immersed in aqueous solution of Fe(NO₃)₃.

(a)

(b)

Fig. S13 UV-vis spectra of 1 (a) or 2 (b) of the MOFs and incorporated-cation samples.

(a)

(b)

Fig. S14. UV-vis spectra of 1 (a) or 2 (b) upon different concentrations of Fe(NO₃)₃

References

- (1) K. Kaur, S. Chaudhary, S. Singh, S. K. Mehta, Sensors and Actuators B, 2016, 232, 396-401.
- (2) D. Wang, L. B. Sun, C. Q. Hao, Y. N. Yan, Z. Q. Liang, RSC Adv., 2016, 6, 57828–57834.
- (3) T. B. Wei, B. Cheng, H. Li, F. Zheng, Q. Lin, H. Yao, Y. M. Zhang, RSC Adv., 2016, 6, 20987–20993.
- (4) L. l. Zhao, X. Xin, P. Ding, A. X. Song, Z. C. Xie, J. L. Shen, G. Y. Xu, Anal. Chim. Acta, 2016, 926, 99-106.
- (5) B. L. Hou, D. Tian, J. Liu, L. Z. Dong, L. L. Shun, D. S. Li, Y. Q. Lan, Inorg. Chem., 2016, 55, 10580–10586.
- (6) H. Zhang, G. Zhang, J. K. Xu, Y. P. Wen, B. Y. Lu, J. Zhang, W. C. Ding, *Sensors and Actuators B*, 2016, 230, 123–129.
- (7) X. L. Zhao, D. Tian, Q. Gao, H. W. Sun, J. Xu, X. H. Bu, Dalton Trans., 2016, 45, 1040-1046.
- (8) C. X. Yang, H. B. Ren, X. P. Yan, Anal. Chem., 2013, 85, 7441-7446.
- (9) Q. H. Tan, Y. Q. Wang, X. Y. Guo, H. T. Liu, Z. L. Liu, RSC Adv., 2016, 6, 61725-61731.
- (10) X. H. Zhou, L. Li, H. H. Li, A. Li, T. Yang, W Huang, Dalton Trans., 2013, 42, 12403-12409.
- (11) B. Wang, Q. Yang, C. Guo, Y. X. Sun, L. H. Xie, J. R. Li, ACS Appl. Mater. Interfaces, 2017, 11, 10286–10295.
- (12) X. Y. Dong, R. Wang, J. Z. Wang, S. Q. Zang, T. C. W. Mak, J. Mater. Chem. A, 2015, 3, 641-647.
- (13) M. Zheng, H. Tan, Z. Xie, L. Zhang, X. Jing, Z. Sun, ACS Appl. Mater. Interfaces, 2013, 5, 1078-1083.
- (14) A. J. Weerasinghe, C. Schmiesing, S. Varaganti, G. Ramakrishna, E. Sinn, J. Phys. Chem. B, 2010, 9413-9419.
- (15) C. Zhang, Y. Yan, Q. Pan, L. Sun, H. He, Y. Liu, Z. Liang, J. Li, Dalton Trans., 2015, 44, 13340-13346.
- (16) M. Wang, J. G. Wang, W. Xue, A. Wu, Dyes Pigments., 2013, 97, 475-480.
- (17) Y. Kang, X. J. Zheng, L. P. Jin, J. Colloid. Interface. Sci., 2016, 471, 1-6.
- (18) J. Wang, Y. Li, M. Jiang, L. Zhang, P. Wu, New J. Chem., 2016, 40, 8600-8606.

- (19) D. Alezi, Y. Belmabkhout, M. Suyetin, P. M. Bhatt, Ł. J. Weselinski, V. Solovyeva, K. Adil, I. Spanopoulos, P. N. Trikalitis, A.-H. Emwas, M. Eddaoudi, J. Am. Chem. Soc., 2015, 137, 13308-13318.
- (20) J. Wang, M. Jiang, L. Yan, R. Peng, M. J. Huangfu, X. X. Guo, Y. Li, and P. Y. Wu, *Inorg. Chem.*, 2016, 55, 12660–12668
- (21) H. J. Zhang, R. Q. Fan, W. Chen, J. Z. Fan, Y. W. Dong, Y. Song, X. Du, P. Wang, and Y. L. Yang, *Cryst. Growth Des.*, 2016, **16**, 5429–5440.
- (22) A. J. Weerasinghe, F. A. Abebe, E. Sinn, Tetrahedron Lett., 2011, 52, 5648-5651.