A facile synthesis strategy to couple porous nanocube of CeO₂ with Ag nanoparticles: An excellent catalyst with enhanced reactivity for 'click reaction' and carboxylation of terminal alkynes

Subhasis Das,^a Paramita Mondal,^b Swarbhanu Ghosh,^b Biswarup Satpati,^c Sasanka Deka,^d Sk. Manirul Islam^{*b} and Tanushree Bala^{*a}

Figure SI-1. TEM images of 3-D porous CeO_2 nanocube prepared by hot injection method at (A) low magnification, (B) high magnification and (C) the corresponding EDX.

Figure SI-2. TEM image of DMP-modified CeO_2 nanocubes. No deformation due to surface modification with DMP.

Table SI-1 Synthesis of 1, 4-disubstituted-1, 2, 3-triazole in the presence of different catalyst in the model reaction.

Entry	Catalyst	Time (h)	Yield ^b (%)
1	CeO ₂ -Ag nanocomposites	3	98
2	CeO ₂	12	15
3	Ag-nps	8	44
4	Ag-HCP	6	68
5	Ag-MPTiO ₂	6	75
6	AgCl	12	23
7	AgNO ₃	12	18

^aReaction conditions: phenyl acetylene (1.2 equiv); aromatic amine (1equiv); Water (10 ml); catalyst (20 mg), room temperature. ^bIsolated yields.

Entry	Solvent	Time (h)	Yield ^b (%)
1	Toluene	6	12
2	DMF	3	88
3	DMSO	3	80
4	THF	5	68
5	ACN	6	47
6	Water	3	98

Table SI-2 Optimization of the solvent for the formation of 1, 4-disubstituted-1, 2, 3-triazole.

^aReaction conditions: phenyl acetylene (1.2 equiv); aromatic amine (1equiv); solvent (10 ml); CeO₂-Ag nanocomposites catalyst (20 mg), room temperature. ^bIsolated yields.

Table SI-3. ¹H NMR data of isolated 1, 4-disubstituted 1, 2, 3-triazoles.

Entry	Base	Solvent	Temperature	Time	Yield ^b
			(⁰ C)	(h)	(%)
1	Na ₂ CO ₃	DMF	80	12	23
2	K ₂ CO ₃	DMF	80	12	49
3	Cs ₂ CO ₃	DMF	80	12	98
4	DBU	DMF	80	12	34
5	DBN	DMF	80	12	37
6	Et ₃ N	DMF	80	12	Trace
7	KO ^t Bu	DMF	80	12	11
8	Cs ₂ CO ₃	DMSO	80	12	62
9	Cs ₂ CO ₃	THF	80	12	44
10	Cs ₂ CO ₃	Dioxane	80	12	28
11	Cs ₂ CO ₃	Toluene	80	12	No reaction
12	Cs ₂ CO ₃	DMF	25	12	12
13	Cs ₂ CO ₃	DMF	50	12	39
14	Cs ₂ CO ₃	DMF	70	12	81
15	Cs ₂ CO ₃	DMF	90	12	98
16	Cs ₂ CO ₃	DMF	80	4	24
17	Cs ₂ CO ₃	DMF	80	8	52
18	Cs ₂ CO ₃	DMF	80	10	78
19	Cs ₂ CO ₃	DMF	80	14	98

Table SI-4 Effect of various reaction parameters on carboxylation of 1-phenylethyne.

^aReaction conditions: alkyne (1.0 mmol), 30 mg of CeO₂-Ag nanocomposites, base (1.5 mmol), CO₂ (1.0 atm), solvent (5 ml), ^bGC Yield.

Figure SI-3. (A) TEM and (B) EDX analysis of CeO₂-Ag nanocomposite catalyst recovered after 5 cycles.

Figure SI-4. XRD of CeO_2 -Ag catalyst recovered after 5 cycles. X (hkl) denotes the (hkl) plane of CeO_2 .

Figure SI-5. XPS spectra of (A) Ce 3d, (B) O 1s, (C) N 1s and (D) Ag 3d from CeO₂-Ag catalyst recovered after 5 cycles.