Supporting Information for

## Three-dimensional conductive porous organic polymers based on tetrahedral polythiophene for high-performance supercapacitors

Tao Li,<sup>a</sup> Wei Zhu,<sup>a</sup> Rui Shen,<sup>a</sup> Hui-Ying Wang,<sup>a</sup> Wei Chen,<sup>a</sup> Si-Jia Hao,<sup>a</sup> Yunxing Li,<sup>a</sup> Zhi-Guo Gu,<sup>a,b\*</sup> Zaijun Li<sup>a\*</sup>

<sup>a</sup> Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China. E-mail: zhiguogu@jiangnan.edu.cn; Fax: +86 510 85917763; Tel: +86 510 85917090;
<sup>b</sup> International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China

*E-mail: zhiguogu@jiangnan.edu.cn* 



Fig. S1 <sup>1</sup>H-NMR spectra of TAPM.



Fig. S2 <sup>1</sup>H-NMR spectra of MTH-1.



Fig. S3 <sup>1</sup>H-NMR spectra of MTH-2.



Fig. S4 Magnification TEM images of (a) POP-1 and (b) POP-2.



Fig. S5 TGA analysis of POP-1 and POP-2 (a) under N<sub>2</sub> atmosphere and (b) at room atmosphere.

## X-ray crystallographic data

|                                        | MTH-1                |
|----------------------------------------|----------------------|
| Formula                                | $C_{45}H_{32}N_4S_4$ |
| Fw                                     | 756.99               |
| <i>T</i> (K)                           | 173                  |
| $\lambda$ (Å)                          | 0.71073              |
| Crystal system                         | monoclinic           |
| Space group                            | C2/c                 |
| <i>a</i> (Å)                           | 22.728(6)            |
| <i>b</i> (Å)                           | 7.4934(18)           |
| <i>c</i> (Å)                           | 21.408(6)            |
| $\alpha$ ( <sup>0</sup> )              | 90                   |
| $\beta$ ( <sup>0</sup> )               | 90.113(11)           |
| $\gamma$ ( <sup>0</sup> )              | 90                   |
| $V(Å^3)$                               | 3646.0(17)           |
| Ζ                                      | 4                    |
| Dcalc (g/cm <sup>3</sup> )             | 1.379                |
| $\mu (\mathrm{mm}^{-1})$               | 0.301                |
| <i>F</i> (000)                         | 1576                 |
| $\theta$ ( <sup>0</sup> )              | 2.617, 24.490        |
|                                        | -26<=h<=26           |
| Index ranges                           | -8<=k                |
|                                        | -24<=1<=24           |
| Reflections collected                  | 11991                |
| GOF $(F^2)$                            | 1.168                |
| $R_I^{a}, wR_2^{b}$ (I>2 $\sigma$ (I)) | 0.0811, 0.1947       |
| $R_1^{\rm a}, wR_2^{\rm b}$ (all data) | 0.1432, 0.2266       |

**Table S1** Summary of crystallographic data for MTH-1.

 $R_{l^{a}} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma F_{o}|. \ wR_{2}^{b} = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w(F_{o}^{2})]^{1/2}$ 

|           |           | MTH-1           |           |
|-----------|-----------|-----------------|-----------|
| C1-C2     | 1.5127(4) | C13-C1-C13(A)   | 104.82(1) |
| C1-C13    | 1.5187(4) | C2(A)-C1-C13(A) | 111.95(1) |
| C1-C2(A)  | 1.5127(4) | C1-C2-C3        | 119.13(1) |
| C1-C13(A) | 1.5187(4) | C14 -C15-C16    | 119.97(1) |
| C2-C3     | 1.3723(4) | C15 -C16-C17    | 118.20(1) |
| S1-C9     | 1.6950(5) | C16 -C17-C18    | 121.52(1) |
| S1-C12    | 1.6817(5) | C13-C18-C17     | 120.82(1) |
| S2-C20    | 1.6969(5) | C5-N2-C8        | 119.58(1) |
| S2-C23    | 1.6756(5) | C16-N2-C19      | 118.27(1) |
| N1-C5     | 1.3927(4) | C2-C1-C13       | 111.95(1) |
| N1-C8     | 1.2556(4) | C2-C1-C2(A)     | 104.48(1) |
| N2-C16    | 1.3911(4) | C2-C1-C13(A)    | 111.93(1) |
| N2-C19    | 1.2601(4) | C2(A)-C1-C13    | 111.93(1) |

 Table S2. Selected bond lengths [Å] and angles [°] for MTH-1.

Symmetry transformations used to generate equivalent atoms: A = -x, y, 1/2-z