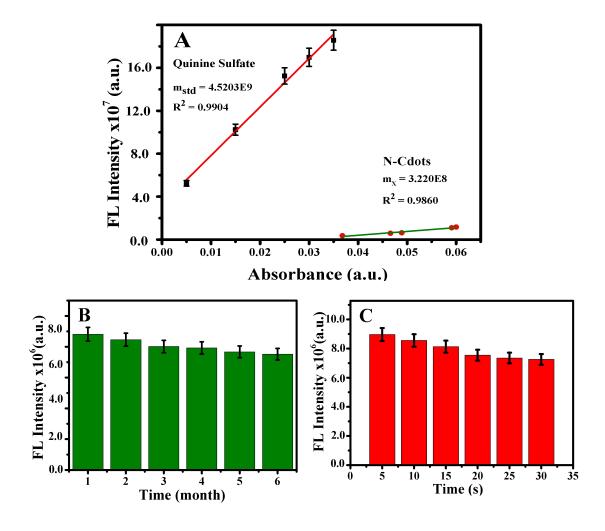
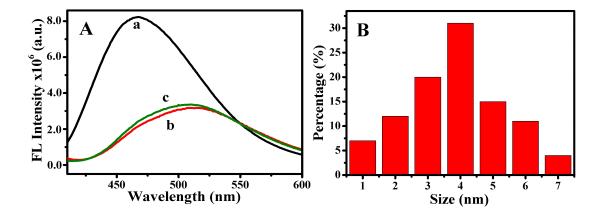
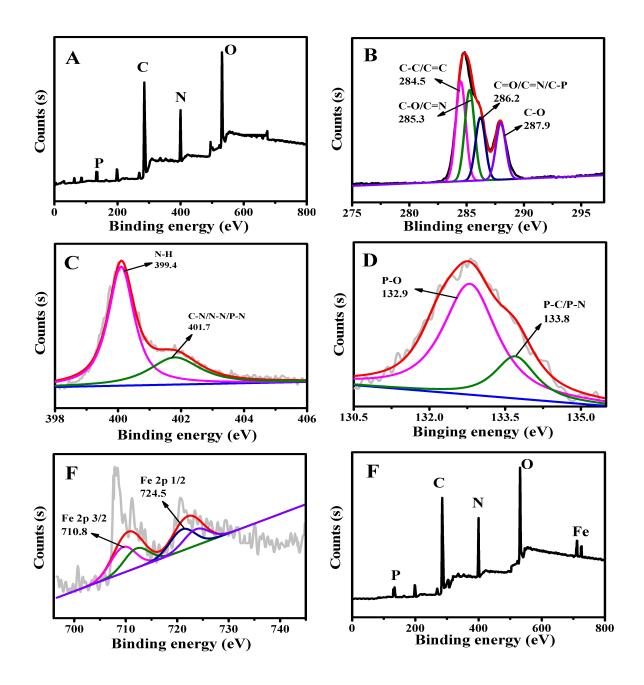

Electronic Supplementary Information

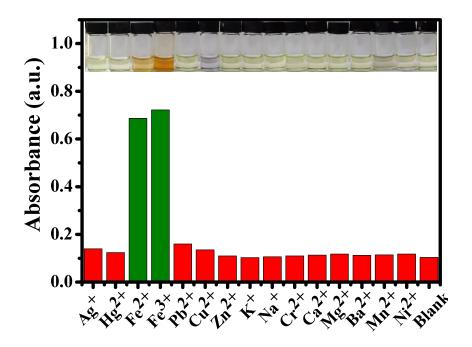
Fluorimetric and colorimetric analysis for total iron ions in blood or tap water using nitrogen-doped carbon dots with tunable fluorescence

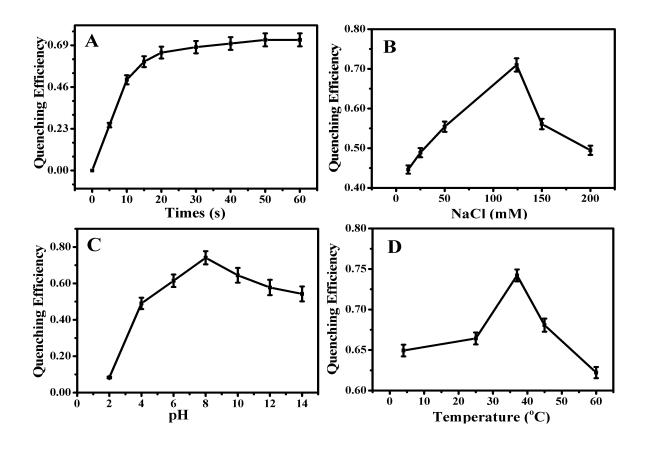

Fengjuan Liu, Yao Jiang, Chuan Fan, Liyan Zhang, Yue Hua, Chunxian Zhang, Ning Song, Yingjie Kong, Hua Wang *

Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, Shandong Province 273165, P. R. China.


* Corresponding authors: <u>huawangqfnu@126.com</u>


Fig. S1 (A) FL spectra (λ ex = 396 nm) of MA-derivatized N-Cdots (0.24 mg mL⁻¹) prepared using different alkaline precursors of EDA, NaOH (1.0 M), and triethylamine separately mixed with H₃PO₄ at the volume ratio of 5 / 3. Fluorescence intensities of N-Cdots prepared depending on the dosages of (B) MA, (C) EDA, and (D) phosphoric acid using 7.5 mg mL⁻¹ MA.


Fig. S2 (A) The plotting for the fluorescence intensities versus absorbance values of N-Cdots or quinine sulfate. (B) Environmental stability of N-Cdots (0.24 mg mL⁻¹) stored in water over different time intervals. (C) Photostability of N-Cdots (0.24 mg mL⁻¹) exposed under xenon lamp, of which the fluorescence intensities were recorded with exposure time indicated.


Fig. S3 (A) Comparison of fluorimetric spectra ($\lambda_{ex} = 396 \text{ nm}$) of N-Cdots (0.24 mg mL⁻¹) in the (a) absence and presence of (b) Fe³⁺ ions (1.0 μ M) or (c) Fe³⁺ ions (1.0 μ M) with Fe powder. (B) The size distribution of N-Cdots by dynamic light scattering analysis.

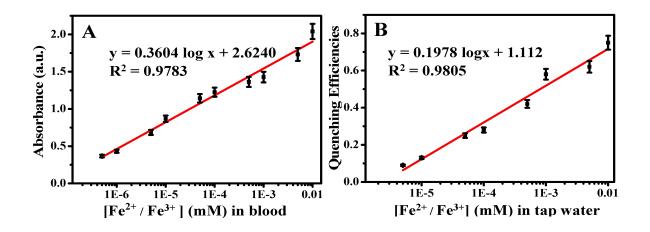

Fig. S4 X-ray photoelectron spectroscopy (XPS) spectra of the as-prepared N-Cdots without iron ions of (A) total elements, (B) C, (C) N, and (D) P; XPS spectra of the ones with iron ions of (E) iron element and (F) total elements.

Fig. S5 Colorimetric responses of N-Cdots (0.24 mg mL⁻¹) to Fe²⁺ or Fe³⁺ ions (1.0 μ M) and other metal ions (1.0 μ M) indicated, with the corresponding photographs of the metal ion solutions (top) and the product solutions (bottom) under visible light.

Fig. S6 Quenching efficiencies of N-Cdots in the presence of Fe^{3+} ions (1.0 μ M) depending on (A) reaction time, (B) ion strengths in NaCl concentrations, (C) pH values (from 2.0 to 12), and (D) reaction temperature.

Fig. S7 The calibration detection curves of the N-Cdots-based (A) colorimetric and (B) fluorimetric analysis describing the relationship between absorbance values (A), or quenching efficiencies (B) the versus the concentrations of total Fe^{3+}/Fe^{2+} ions of different concentrations spiked in blood and tap water samples, respectively.

Table S1 Comparison of LODs among various fluorimetric analysis methods using different probes for detecting Fe³⁺ ions.

Fluorescent Probes	LODs	References
Aminoantipyrine	0.211 µM	Ref. 1
Pyrazoline derivative	1.4 µM	Ref. 2
Graphene quantum dots	0.020µM	Ref. 3
Sulfur-doped graphene quantum dots	0.0042 µM	Ref. 4
N and S doped carbon dots	0.80 µM	Ref. 5
N-Cdots	0.0050 µM	This work

- Y. Zhou, H. Zhou, J. Zhang, L. Zhang, J. Niu, Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2012, 98, 14-17.
- S. Hu, S. Zhang, C. Gao, C. Xu, Q. Gao, Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2013, 113, 325-331.
- R. Guo, S. Zhou, Y. Li, X. Li, L. Fan, N.H. Voelcker, ACS Applied Materials & Interfaces, 2015, 7, 23958-23966.
- 4. S. Li, Y. Li, J. Cao, J. Zhu, L. Fan, X. Li, Analytical Chemistry, 2014, 86, 10201-10207.
- W. Lu, X. Gong, M. Nan, Y. Liu, S. Shuang, C. Dong, Analytica Chimica Acta, 2015, 898, 116-127.