Supporting Information

Reactivity of a New Aryl Cycloplatinated(II) Complex Containing Rollover 2,2'-Bipyridine N-Oxide toward a Series of Diphosphine Ligands

Hamid R. Shahsavari,^a* Reza Babadi Aghakhanpour,^a Mojdeh Hossein-Abadi,^a Reza Kia,^b* Mohammad Reza Halvagar^c and Paul R. Raithby^d

^aDepartment of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Yousef Sobouti Blvd., Zanjan 45137-66731, Iran. ^bChemistry Department, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran. ^cChemistry & Chemical Engineering Research Center of Iran, Tehran,14968-13151, Iran. ^dDepartment of Chemistry, University of Bath, Claverton Down, BA2 7AY, Bath, UK. Email: shahsavari@iasbs.ac.ir (H.R.S.); rkia@sharif.edu (R.K.).

Contents:	Page		
Figure S1. ¹ H NMR spectrum of the complex 1 in CD_2Cl_2 .	4		
Figure S2. ¹ H{Pt} NMR spectrum of the complex 1 in CD_2Cl_2 .	5		
Figure S3. ¹³ C{H} NMR spectrum of the complex 1 in CD_2Cl_2 .	6		
Figure S4. DEPT 135° spectrum of the complex 1 in CD ₂ Cl ₂ .			
Figure S5. 195 Pt{H} NMR spectrum of the complex 1 in CD ₂ Cl ₂ .	8		
Figure S6. HHCOSY spectrum of the complex 1 in CD_2Cl_2 .	9		
Figure S7. HSQC spectrum of the complex 1 in CD_2Cl_2 .	10		
Figure S8. NOESY spectrum of the complex 1 in CD_2Cl_2 .	11		
Figure S9. Crystal packing of the complex 1 shows the formation of centrosymmetric head-to-	12		
tail dimer through the intermolecular C–H…O interaction.			
Figure S10. ¹ H NMR spectrum of the complex 2a in CDCl ₃ .	13		
Figure S11. ³¹ P{H} NMR spectrum of the complex 2a in CDCl ₃ .	14		
Figure S12. ¹⁹⁵ Pt NMR spectrum of the complex 2a in CDCl ₃ .	15		
Figure S13. ¹ H NMR spectrum of the complex 2b in CDCl ₃ .	16		
Figure S14. ¹³ C NMR spectrum of the complex 2b in CDCl ₃ .	17		
Figure S15. ³¹ P{H} NMR spectrum of the complex 2b in CDCl ₃ .	18		
Figure S16. ¹⁹⁵ Pt NMR spectrum of the complex 2b in CDCl ₃ .	19		
Figure S17. Crystal packing of the complex 2a showing one-dimensional extended chain along	20		
the <i>a</i> -axis through intermolecular C–H···N interactions.			
Figure S18. Crystal packing of the complex 2b showing one-dimensional extended chain along	21		
the <i>a</i> -axis through intermolecular C–H···O interactions.			
Figure S19. ¹ H NMR spectrum of the complex 3a in CDCl ₃ .	22		
Figure S20. ¹ H{P} NMR spectrum of the complex 3a in CDCl ₃ .	23		
Figure S21. ¹ H NMR spectrum of the complex $3a + D_2O$ in CDCl ₃ .	24		
Figure S22. ¹³ C NMR spectrum of the complex 3a in CDCl ₃ .	25		
Figure S23. ³¹ P{H} NMR spectrum of the complex 3a in CDCl ₃ .	26		
Figure S24. ¹⁹⁵ Pt NMR spectrum of the complex 3a in CDCl ₃ .	27		
Figure S25. ¹ H NMR spectrum of the mixture of the complexes 3a and 3b in CDCl ₃ .	28		
Figure S26. ³¹ P{H} NMR spectrum of the mixture of the complexes 3a and 3b in CDCl ₃ .	29		
Figure S27. ¹ H NMR spectrum of the complex 4a in CDCl ₃ .	30		
Figure S28. ³¹ P{H} NMR spectrum of the complex 4a in CDCl ₃ .	31		
Figure S29. ¹⁹⁵ Pt NMR spectrum of the complex 4a in CDCl ₃ .	32		
Figure S30. ¹ H NMR spectrum of the complex 4b in CDCl ₃ .	33		
Figure S31. ¹³ C NMR spectrum of the complex 4b in CDCl ₃ .	34		
Figure S32. ³¹ P{H} NMR spectrum of the complex 4b in CDCl ₃ .	35		
Figure S33. ¹⁹⁵ Pt NMR spectrum of the complex 4b in CDCl ₃ .	36		
Figure S34. ¹ H NMR spectrum of the complex 5a in CDCl ₃ .	37		
Figure S35. ³¹ P{H} NMR spectrum of the complex 5a in CDCl ₃ .	38		
Figure S36. ¹⁹⁵ Pt NMR spectrum of the complex 5a in CDCl ₃ .	39		
Figure S37. ¹ H NMR spectrum of the complex 5b in CDCl ₃ .	40		
Figure S38. ¹³ C NMR spectrum of the complex 5b in CDCl ₃ .	41		
Figure S39. ³¹ P{H} NMR spectrum of the complex 5b in CDCl ₃ .	42		

Figure S40. ¹⁹⁵ Pt NMR spectrum of the complex 5b in CDCl ₃ .	43	
Figure S41. Crystal packing of the complex 5b showing one-dimensional extended chain along		
the [011] direction through intermolecular C–H···O interactions.		
Figure S42. ¹ H NMR spectrum of the complex 6b in CDCl ₃ .	45	
Figure S43. ³¹ P{H} NMR spectrum of the complex 6b in CDCl ₃ .	46	
Figure S44. ¹ H NMR spectrum of the complex 7a in CDCl ₃ .	47	
Figure S45. ¹³ C NMR spectrum of the complex 7a in CDCl ₃ .	48	
Figure S46. ³¹ P{H} NMR spectrum of the complex 7a in CDCl ₃ .	49	
Figure S47. ¹⁹⁵ Pt NMR spectrum of the complex 7a in CDCl ₃ .	50	
Figure S48. ¹ H NMR spectrum of the complexes $7a + 1$ in CDCl ₃ .	51	
Figure S49. ¹ H NMR spectrum of the complex 8b in CDCl ₃ .	52	
Figure S50. ³¹ P{H} NMR spectrum of the complex 8b in CDCl ₃ .	53	
Table S1. Crystal data and refinement parameters of the complexes 1, 2a, 2b and 5b.	54	
Table S2. Selected bond lengths (Å) and angles (°) of the complexes 1, 2a, 2b and 5b.	55	
Table S3. Hydrogen bonding interactions parameters in the complexes 1, 2a, 2b and 5b.	55	

Figure S1. ¹H NMR spectrum of the complex 1 in CD₂Cl₂.

Figure S2. ¹H{Pt} NMR spectrum of the complex 1 in CD_2Cl_2 .

Figure S3. ${}^{13}C{H}$ NMR spectrum of the complex 1 in CD_2Cl_2 .

Figure S4. DEPT 135° spectrum of the complex 1 in CD_2Cl_2 .

Figure S5. ¹⁹⁵Pt{H} NMR spectrum of the complex 1 in CD_2Cl_2 .

Figure S6. HHCOSY spectrum of the complex 1 in CD_2Cl_2 .

Figure S7. HSQC spectrum of the complex 1 in CD_2Cl_2 .

Figure S8. NOESY spectrum of the complex 1 in CD_2Cl_2 .

Figure S9. Crystal packing of the complex 1 shows the formation of centrosymmetric head-to-tail dimer through the intermolecular C–H…O interaction.

Figure S10. ¹H NMR spectrum of the complex 2a in CDCl₃.

Figure S11. ${}^{31}P{H}$ NMR spectrum of the complex 2a in CDCl₃.

Figure S12. ¹⁹⁵Pt NMR spectrum of the complex 2a in CDCl₃.

Figure S13. ¹H NMR spectrum of the complex 2b in CDCl₃.

Figure S14. ¹³C NMR spectrum of the complex 2b in CDCl₃.

Figure S15. ${}^{31}P{H}$ NMR spectrum of the complex 2b in CDCl₃.

Figure S16. ¹⁹⁵Pt NMR spectrum of the complex 2b in CDCl₃.

Figure S17. Crystal packing of the complex **2a** showing one-dimensional extended chain along the *a*-axis through intermolecular C–H···N interactions.

Figure S18. Crystal packing of the complex **2b** showing one-dimensional extended chain along the *a*-axis through intermolecular C–H···O interactions.

Figure S19. ¹H NMR spectrum of the complex 3a in CDCl₃.

Figure S21. ¹H NMR spectrum of the complex $3a + D_2O$ in CDCl₃.

Figure S22. ¹³C NMR spectrum of the complex 3a in CDCl₃.

Figure S23. ³¹P{H} NMR spectrum of the complex 3a in CDCl₃.

Figure S24. ¹⁹⁵Pt NMR spectrum of the complex 3a in CDCl₃.

Figure S25. ¹H NMR spectrum of the mixture of the complexes 3a and 3b in CDCl₃.

Figure S26. ³¹P{H} NMR spectrum of the mixture of the complexes 3a and 3b in CDCl₃.

Figure S27. ¹H NMR spectrum of the complex 4a in CDCl₃.

Figure S28. ³¹P{H} NMR spectrum of the complex 4a in CDCl₃.

Figure S29. ¹⁹⁵Pt NMR spectrum of the complex 4a in CDCl₃.

Figure S31. ¹³C NMR spectrum of the complex 4b in CDCl₃.

Figure S32. ${}^{31}P{H}$ NMR spectrum of the complex 4b in CDCl₃.

Figure S33. ¹⁹⁵Pt NMR spectrum of the complex 4b in CDCl₃.

Figure S34. ¹H NMR spectrum of the complex 5a in CDCl₃.

Figure S35. ${}^{31}P{H}$ NMR spectrum of the complex 5a in CDCl₃.

-6

--4444.27

-4464.02

--4486.96

Figure S36. ¹⁹⁵Pt NMR spectrum of the complex 5a in CDCl₃.

Figure S38. ¹³C NMR spectrum of the complex 5b in CDCl₃.

Figure S39. ${}^{31}P{H}$ NMR spectrum of the complex 5b in CDCl₃.

---3999.60

Figure S40. ¹⁹⁵Pt NMR spectrum of the complex 5b in CDCl₃.

Figure S41. Crystal packing of the complex 5b showing one-dimensional extended chain along the [011] direction through intermolecular C–H \cdots O interactions.

Figure S42. ¹H NMR spectrum of the complex 6b in CDCl₃.

Figure S43. ${}^{31}P{H}$ NMR spectrum of the complex 6b in CDCl₃.

Figure S44. ¹H NMR spectrum of the complex 7a in CDCl₃.

Figure S45. ¹³C NMR spectrum of the complex 7a in CDCl₃.

Figure S46. ${}^{31}P{H}$ NMR spectrum of the complex 7a in CDCl₃.

т

--4490.61

--4510.66 --4514.63

---4534.61

Figure S47. ¹⁹⁵Pt NMR spectrum of the complex 7a in CDCl₃.

Figure S48. ¹H NMR spectrum of the complexes 7a + 1 in CDCl₃.

Figure S49. ¹H NMR spectrum of the complex 8b in CDCl₃.

Figure S50. ${}^{31}P{H}$ NMR spectrum of the complex 8b in CDCl₃.

Complay	1	20	3 h	
Empirical formula	L C.H.N.OPtS	Za C.H.N.OP.Pt	20 C.H.Cl.N.O.P.Pt.	CHN.O.P.Pt.
Empirical formula	519 52	841 76	1384 07	1413 37
Crystal size (mm)	$0.05 \times 0.103 \times 0.14$	$0.06 \times 0.09 \times 0.12$	$0.05 \times 0.11 \times 0.14$	$0.10 \times 0.18 \times 0.35$
Colour		$P_{ale-vellow}$	Pale vellow	$\mathbf{D}_{ale-vellow}$
Crystal system	triclinic	triclinic	triclinic	triclinic
Space group	P_{-1}	P_{-1}	P_{-1}	\overline{P}_{-1}
A (°)	25.0	7 7 A	32	73.1
$\sigma_{\max}(1)$	25.0	72.4 0.0415(3)	11,856(0)	127062(1)
u(A) $b(\hat{A})$	8.1277(10) 10.400(2)	9.0413(3) 0.9122(2)	12.742(2)	12.7903(4) 16.0607(5)
U(A)	10.499(2) 11.590(2)	9.0123(3) 10.2045(6)	12.742(5) 19.406(4)	10.9007(3) 17.2418(5)
$\mathcal{C}(A)$	11.360(2) 72.55(2)	19.3943(0) 00.271(2)	78 96(2)	1/.2410(3) 112542(2)
$\mathcal{L}(\mathcal{O})$	75.55(5) 82.07(2)	90.271(3) 02.025(2)	78.90(2)	112.343(3) 106.200(2)
p()	82.97(3)	92.923(3)	//.02(4)	100.309(3)
$\gamma(1)$	73.00(3)	92.8/3(3)	80.00(4)	91.340(2)
$V(A^3)$	908.2(4)	1/10.19(9)	2044(2)	3280.30(19)
L	2	2	2	2
D_{calc} (Mg/m ³)	1.900	1.629	1.739	1.431
$\mu (mm^{-1})$	7.847	8.811	5.495	8.653
F(000)	500	836	1352	1400
Index ranges	$-9 \le h \le 9$	$-10 \le h \le 11$	$-16 \le h \le 17$	$-10 \le h \le 15$
	$-11 \le k \le 12$	$-11 \le k \le 8$	$-15 \le k \le 17$	$-20 \le k \le 20$
	$-13 \le 1 \le 13$	$-23 \le 1 \le 23$	$-27 \le 1 \le 24$	$-21 \le l \le 21$
No. of meas. reflns.	6439	12582	30406	27596
No. of independent				
reflns./R _{int}	3157/0.078	6653/0.058	16055/0.0628	12729/0.039
No. of observed				
reflns. I > $2\sigma(I)$	3112	6418	10688	11425
No. of parameters	220	434	651	739
Goodness-of-fit	0.873	1.114	1.005	1.021
R ₁ (observed data)	0.0475	0.0392	0.0604	0.0317
wR_2 (all data)	0.0971	0.1043	0.0828	0.0849
CCDC No.	1818536	1818535	1818538	1818537

 Table S1. Crystal data and refinement parameters of the complexes 1, 2a, 2b and 5b.

Bond lengths (Å)	1	2a	2b	5b
Pt(1) - N(1)	2.151(9)	2.125(4)	2.111(6)	2.108(3)
Pt(1)-C(1)	1.918(15)	2.036(5)	2.040(6)	2.043(3)
Pt(1)-C(11)	2.017(11)	2.001(4)	2.005(7)	2.018(3)
Pt(1)-P(1)	-	2.3089(10)	2.3043(17)	2.3109(8)
Pt(2) - P(2)	-	-	2.330(2)	2.3061(8)
Pt(1)-N(1)	2.151(9)	2.125(4)	2.111(6)	2.108(3)
Pt(2)-N(1A)	-	-	2.127(5)	2.110(3)
N(2)–O(1)	1.309(12)	1.302(5)	1.301(8)	1.309(5)
Bond angles (°)				
C(1)-Pt(1)-N(1)	80.5(5)	79.71(16)	79.6(2)	79.27(14)
C(11)-Pt(1)-P(1)	_	90.85(12)	91.55(17)	85.69(10)
C(1)-Pt(1)-P(1)	_	173.77(12)	171.81(18)	176.08(11)
N(1)-Pt(1)-C(11)	173.7(5)	169.59(15)	169.6(2)	170.08(13)
C(1)-Pt(1)-S(1)	175.9(4)	_	175.9(4)	_
N(1)-Pt(1)-P(1)	_	99.16(10)	98.83(15)	104.18(9)
C(1)-Pt(1)-C(11)	93.4(5)	86.9(9)	90.1(3)	90.90(15)
C(11)-Pt(1)-S(1)	90.6(3)	_	_	_

Table S2. Selected bond lengths (Å) and angles (°) of the complexes 1, 2a, 2b and 5b.

Table S3. Hydrogen bonding interactions parameters in the complexes 1, 2a, 2b and 5b.

	D–H···A	H…A (Å)	$D \cdots A(A)$	$D-H\cdots A(^{\circ})$
2 b	C(1S)-H(1S1)-O(1)	2.27	3.235(10)	173
	$C(1S)-H(1S2)-O(1)^{i}$	2.58	3.518(11)	163
	C(7)-H(7)-O(1)	2.17	2.762(9)	120
	C(7)–H(7A)···O(1A)	2.15	2.761(9)	122
	C(19)–H(19)···O(1A) ⁱⁱ	2.57	3.397(8)	148
2a	$C(4)-H(4)\cdots O(1)^{iii}$	2.24	3.153(5)	166
	C(7)-H(7)-O(1)	2.13	3.742(6)	122
	$C(15)-H(15)-N(2)^{iv}$	2.56	3.462(6)	164
5b	$C(4)-H(4)-O(1A)^{v}$	2.39	3.255(6)	155
	C(7)-H(7)-O(1)	2.14	2.767(6)	123
	$C(7)-H(7)-O(1)^{vi}$	2.55	3.250(5)	132
	C(7A)-H(7A)-O(1A)	2.12	2.729(5)	122
	C(8)–H(8)…O(1A) ^{vii}	2.33	3.179(6)	152
1	C(18)–H(18B)···O(1) ^{viii}	2.44	3.380(17)	166
	C(12)-H(10)-S(1)	2.73	3.356(13)	126
	$C(7)-H(7)\cdots O(1)$	2.15	2.763(17)	122

*Symmetry codes: (i) 1 - x, - y, - z (ii) -1 + x, y, z (iii) -x, 2 - y, 2 - z (iv) 1 + x, y, z (v) x, -1 + y, -1 + z (vi) 2 - x, 2 - y, -z (vii) 2 - x, 3 - y, 1 - z (vii) 1 - x, -y, 1 - z