Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Ferrocene amphiphilic D-π-A dyes: Synthesis, redox behavior and determination of Band Gaps.

Byron López-Mayorga,¹ César I. Sandoval-Chávez¹, Pilar Carreón- Castro¹, Víctor M. Ugalde-Saldívar², Fernando Cortés-Guzmán,³ José G. López-Cortes³, M. Carmen Ortega-Alfaro^{*,1}

¹Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Cd. de México, 04510, México.

² Facultad de Química, Universidad Nacional Autónoma de México, Edificio B. Av. Universidad 3000, Coyoacán, Cd. de México, 04510, México.

³Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria, Coyoacán, Cd. De México, 04510, México

Contents

Synthesis of 1a, 1b and 3.

Figure S-1.¹ H NMR spectrum of **1a**[Br] in CDCl₃ (300 MHz).

Figure S–2. ¹³C NMR spectrum of **1a**[Br] in CDCl₃ (75 MHz).

Figure S-3.¹ H NMR spectrum of **1b**[Br] in CDCl₃ (300 MHz).

Figure S-4. ¹³C NMR spectrum of **1b**[Br] in CDCl₃ (75 MHz).

Figure S–5.¹ H NMR spectrum of **3**[Br] in CDCl₃ (300 MHz).

Figure S–6. ¹³C NMR spectrum of **3**[Br] in CDCl₃ (75 MHz).

Figure S-7.¹ H NMR spectrum of **2a**[Br] in CDCl₃ (300 MHz).

Figure S-8. ¹³C NMR spectrum of **2a**[Br] in CDCl₃ (75 MHz).

Figure S–9.¹ H NMR spectrum of **2b**[Br] in CDCl₃ (300 MHz).

Figure S–10. ¹³C NMR spectrum of **2b**[Br] in CDCl₃ (75 MHz).

Figure S-11¹ H NMR spectrum of 4[Br] in CDCl₃ (300 MHz).

Figure S-12. ¹³C NMR spectrum of 4[Br] in CDCl₃ (75 MHz).

Figure S-13. ¹H NMR spectrum of $2a[BF_4]$ in acetone- d_6 (300 MHz).

Figure S-14. ¹⁹F NMR spectrum of **2a**[BF₄] in CDCl₃ (282 MHz).

Figure S-15. ¹H NMR spectrum of $2b[BF_4]$ in acetone- d_6 (300 MHz).

Figure S–16. ¹⁹F NMR spectrum of **2b**[BF₄] in CDCl₃ (282 MHz).

Figure S-17. ¹H NMR spectrum of 4[BF₄] in CDCl₃ (300 MHz).

Figure S–18. ¹⁹F NMR spectrum of 4[BF₄] in CDCl₃ (282 MHz).

Synthesis of 6a, 6b and 7.

Figure S–19. ¹ H NMR spectrum of **6a** in CDCl₃ (300 MHz).

Figure S–20. ¹³C NMR spectrum of **6a** in CDCl₃ (75 MHz).

Figure S–21. ¹ H NMR spectrum of **6b** in CDCl₃ (300 MHz).

Figure S–22. ¹³C NMR spectrum of **6b** in CDCl₃ (75 MHz).

Figure S–23. ¹ H NMR spectrum of 7 in CDCl₃ (300 MHz).

Figure S–24. ¹³C NMR spectrum of 7 in CDCl₃ (75 MHz).

Figure S-25. Comparative 1H NMR spectra of (2a-b, 4) [Br] and 6a-b and 7

Table S1. Absorption maxima for ferrocenyl amphiphilic D- π -A dyes: Ionic and neutral analogues

Figure S-26. Absorption spectrum in CH₃CN and λ_{onset} of **2a** [**BF**₄].

Figure S-27. Absorption spectrum in CH₃CN and λ_{onset} of **2b** [**BF**₄].

Figure S-28. Absorption spectrum in CH₃CN and λ_{onset} of **2b** [**BF**₄].

Figure S-29. Cyclic voltammograms obtained in 0.1 mol L^{-1} Bu₄NPF₆ acetonitrile solutions on glassy carbon electrode at 100 mVs⁻¹using1mM of **2a[Br]**.

Figure S-30. Cyclic voltammograms obtained in 0.1 mol L^{-1} Bu₄NPF₆ acetonitrile solutions on glassy carbon electrode at 100 mVs⁻¹using1 mmol L^{-1} of **2b[Br]**.

Figure S-31. Cyclic voltammograms obtained in 0.1 mol L^{-1} Bu₄NPF₆ acetonitrile solutions on glassy carbon electrode at 100 mVs⁻¹using1mmol L^{-1} of **4b**[Br].

Figure S-32. Cyclic voltammograms obtained in 0.1 mol L^{-1} Bu₄NPF₆ acetonitrile solutions on glassy carbon electrode at 100 mVs⁻¹using 1 mmol L^{-1} of **2a[BF₄]**.

Figure S-33. Cyclic voltammograms obtained in 0.1 mol L^{-1} Bu₄NPF₆ acetonitrile solutions on glassy carbon electrode at 100 mVs⁻¹using 1 mmol L^{-1} of **2b[BF₄]**.

Figure S-34. Cyclic voltammograms obtained in 0.1 mol L^{-1} Bu₄NPF₆ acetonitrile solutions on glassy carbon electrode at 100 mVs⁻¹using1mmol L^{-1} of **4b**[BF₄].

Figure S-35. Comparative cyclic voltammograms obtained in $0.1M Bu_4NPF_6$ solutions on glassy carbon electrode at 100 mVs⁻¹using 1 mmol L⁻¹ solutions of **TBAB** (Tetrabutylammonium bromide) (teal), 2a[Br] (red)2a [BF₄] (orange).

Figure S-36. Comparative cyclic voltammograms obtained in 0.1 mmol L^{-1} Bu₄NPF₆ solutions on glassy carbon electrode at 100 mVs-1 (negative direction) using 1 mmol L^{-1} solutions of **2a**[Br] (red), **2b**[Br] (green), **4** [Br] (blue) and the corresponding precursors salts **1a**, **1b** and **3** (black).

Table S2. Potential values of IIap (assigned to Bromide anion), IVap /IIIcp (assigned to heterocyclic cation).

Figure S-37. Cyclic voltammograms to calculate the potential onset of oxidation and reduction for **2a[Br]**

Figure S-38. Cyclic voltammograms to calculate the potential onset of oxidation and reduction for **2b[Br]**.

Figure S-39. Cyclic voltammograms to calculate the potential onset of oxidation and reduction for **4**[Br].

Figure S-40. Cyclic voltammograms to calculate the potential onset of oxidation and reduction for $2a[BF_4]$.

Figure S-41. Cyclic voltammograms to calculate the potential onset of oxidation and reduction for $2b[BF_4]$.

Figure S-42. Cyclic voltammograms to calculate the potential onset of oxidation and reduction for $4[BF_4]$

Computational Section

Optimized geometries for compounds 2a', 2b' and 4'

Images of molecular orbitals involved in the excited states of each compound

Synthesis of 1a, 1b and 3.

To a round-bottomed flask equipped with a condenser, 2-picoline (0.001 mol) and 1bromohexadecane (0.0012 mol) were heated in an oil bath at 110°C for 4 hours. After, cooling; diethyl ether was added and a precipitate appeared. The latter was isolated by filtration and washed with diethyl ether, to give **1a** as a white solid (0.21 g, 66%). ¹H NMR (300 MHz, CDCl₃): 9.53 (d, 1H, CH-Py, J = 6 Hz), 8.39 (t, 1H, CH-Py), 8.0 (d, 1H, CH-Py), 7.93 (t, 1H, CH-Py), 4.80 (t, 2H, $-CH_2-N^+$), 2.93 (s, 3H, CH₃-Py), 1.86 (m, 2H, CH₂alkyl), 1.38 (m, 2H), 1.17 (br s, 25 H, CH₂-alkyl), 0.80 (s, 3H CH₃). ¹³C NMR (75MHz, CDCl₃). δ 154.2 (C-Py), 146.5 (C-Py), 145.2 (C-Py), 130.4 (C-Py), 126.4 (C-Py), 58.5 (– CH₂-N⁺), 31.9, 30.8, 29.6, 29.5, 29.3, 29.1, 26.3, 22.6, 20.8 (CH₃-Py), 14.1 (CH₃). MS-DART⁺, *m/z* (%): 318 (100) (M⁺); 319 (26) (M⁺+1).

A similar procedure was conducted using 4-picoline: (**1b**) White Solid (0.23 g 72 %) ¹H NMR (300 MHz, CDCl₃): δ 9.23 (d, 2H, Py, J = 6 Hz), 7.87 (d, 2H, Py, J = 6 Hz), 4.81 (t, 2H, -CH₂-N⁺), 2.61 (s, 3H, CH₃-Py), 1.96 (m, 2H, CH₂-alkyl) 1.19 (br s, 27 H), 0.81 (t, 3H, CH₃). ¹³C NMR (75 MHz, CDCl₃): δ 158. 8 (C-Py), 144.2 (C-Py), 128.9 (C-Py), 61.3 (-CH₂-N⁺), 31.9, 31.8 29.7, 29.6, 29.5, 29.4, 29.3, 29.1, 26.1, 22.7 (CH₂-alkyl), 22.2 (CH₃-Py), 14. 1(CH₃). MS-DART⁺, *m/z* (%): 318 (54) (M⁺).

A similar procedure was conducted using 4-quinoline: **(3)** Gray solid, (0.26 g, 77%) ¹H NMR (300 MHz, CDCl₃): δ 10.22 (d, 1H, C-H quinoline, J = 6 Hz), 8.33 (d, 2H, C-H, quinoline), 8.16 (t, 1H, C-H, quinoline), 8.01 (d, 1H, C-H, quinoline), 5.27 (t, 2H, , –CH₂-N⁺), 2.97, (s, 3H, CH₃-quinoline), 2.02 (m, 2H, CH₂-alkyl), 1.43 (m, 2H, CH₂-alkyl), 1.17 (br, 27H, CH₂-alkyl), 0.81 (t, 3H, CH₃-alkyl). ¹³C NMR (75 MHz, CDCl₃): δ 157.8 (C-H, quinoline), 149.5 (C-H, quinoline), 137.0 (C, quinoline), 123.5 (C-H, quinoline), 129.9 (C-H, quinoline), 129.4 (C, quinoline), 126.9 (C-H, quinoline), 123.5 (C-H, quinoline), 118.9 (C-H, quinoline), 57.8 (–CH₂-N⁺), 30.3, 29.6, 29.5, 29.4, 29.3, 29.2, 25.5, (CH₂-alkyl) 22.6 (CH₃-quinoline), 14.1 (CH₃-alkyl). MS-DART⁺, *m/z* (%): 369 (25) (M⁺ + 1); 368 (80) (M⁺); 144(100) (M⁺-C₁₆H₃₂).

Figure S-5. ¹H NMR spectrum of **3** in CDCl₃ (300 MHz).

Figure S-6. ¹³C NMR spectrum of **3**. in CDCl₃ (75MHz).

Figure S–7. ¹ H NMR spectrum of **2a**[Br] in CDCl₃ (300MHz).

Figure S–8. ¹³C NMR spectrum of **2a**[Br] in CDCl₃ (75MHz).

Figure S-10. ¹³C NMR spectrum of **2b**[Br] in CDCl₃ (75MHz).

Figure S–12. ¹³C NMR spectrum of **4**[Br] in CDCl₃ (75MHz).

Figure S-13. ¹H NMR spectrum of $2a[BF_4]$ in acetone- d_6 (300 MHz).

Figure S–14. ¹⁹F NMR spectrum of $2a[BF_4]$ in acetone- d_6 (282 MHz).

Figure S-15. ¹H NMR spectrum of $2b[BF_4]$ in acetone- d_6 (300 MHz).

Figure S–16. ¹⁹F NMR spectrum of **2b**[BF₄] in CDCl₃ (282 MHz).

Figure S–18. ¹⁹F NMR spectrum of **4[BF₄]** in CDCl₃ (282 MHz).

Figure S–20. 13 C NMR spectrum of **6a**. in CDCl₃ (75MHz).

Figure S–22. ¹³C NMR spectrum of **6b** in CDCl₃ (75 MHz).

Figure S–23.¹ H NMR spectrum of 7 in CDCl₃ (300MHz).

Figure S–24. ¹³C NMR spectrum of **7** in CDCl₃ (75MHz).

Figure S-25. Comparative ¹H NMR spectra of vinyl hydrogens zone of [**2a-b**, **4**][Br], **6a-b** and **7**.

Table S-1. Absorption maxima for ferrocenyl amphiphilic D- π -A dyes: Ionic and neutral analogues. ^a

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ax ^b (0.08) 7 (0.08)
1 $2a[Br]$ 551 3.8 533 2 355 141 347 8	0 0.08 7 0.08
$1 \qquad 2a[Bf] \qquad 255 \qquad 14.1 \qquad 247 \qquad 9$	7 0.08
555 14.1 547 6	
2 20[PE] 550 2.3 530 1	9 0.08
2 2a[br ₄] 354 8.2 347 7	2 0.07
2 2b[Pr] 575 5.6 552 3	6 0.09
3 20[B1] 373 19.7 362 14	.9 0.10
4 2MPE 1 578 5.3 551 4	5 0.10
4 20[BF4] 374 19.3 362 19	.0 0.11
612 3.5 598 3	3 0.04
5 4[Br] 409 7.7 406 8	0 0.02
320 7.5 320 7	2 0
621 4.1 601 3	3 0.07
6 4[BF ₄] 413 10.4 405 9	5 0.06
319 9.3 320 7	0 0.01
7 60 464 1.4 461 1	4 0.02
317 18.5 314 17	.9 0.04
8 6b 467 1.6 465 1	2 0.01
8 00 313 18.8 311 16	.5 0.02
Q 7 478 2.0 476 1	8 0.01
335 13.2 335 12	.8 0

 $\label{eq:linear} {}^a\lambda_{max}~(nm),~{}^b\epsilon~(10^3mol^{-1}L~cm^{-1}),~{}^c\Delta E~(eV):~Solvent-induced~shift~[\epsilon_{max}~CHCl_3 - \epsilon_{max}~CH_3CN].$

Figure S-26. Absorption spectrum in CH₃CN and λ_{onset} of **2a** [**BF**₄].

Figure S-27. Absorption spectrum in CH₃CN and λ_{onset} of **2b[BF₄]**.

Figure S-28. Absorption spectrum in CH₃CN and λ_{onset} of **4[BF₄]**.

Figure S-29. Cyclic voltammograms obtained in 0.1 mol L^{-1} Bu₄NPF₆ acetonitrile solutions on glassy carbon electrode at 100 mVs⁻¹using 1 mmol L^{-1} of **2a**[Br], started in both positive and negative directions.

Figure S-30. Cyclic voltammograms obtained in 0.1 mol L^{-1} Bu₄NPF₆ acetonitrile solutions on glassy carbon electrode at 100 mVs⁻¹using1mmol L^{-1} of **2b**[Br], started in both positive and negative directions.

Figure S-31. Cyclic voltammograms obtained in 0.1 mol L⁻¹ Bu₄NPF₆ acetonitrile solutions on glassy carbon electrode at 100 mVs⁻¹using1mmol L⁻¹ of **4**[Br], started in both positive and negative directions.

Figure S-32. Cyclic voltammograms obtained in 0.1 mol L⁻¹ Bu₄NPF₆ acetonitrile solutions on glassy carbon electrode at 100 mVs⁻¹using 1 mmol L⁻¹ of **2a**[BF₄], started in both positive and negative directions.

Figure S-33. Cyclic voltammograms obtained in 0.1 mol L^{-1} Bu₄NPF₆ acetonitrile solutions on glassy carbon electrode at 100 mVs⁻¹using1mmol L^{-1} of **2b**[BF₄], started in both positive and negative directions.

Figure S-34. Cyclic voltammograms obtained in 0.1 mol L^{-1} Bu₄NPF₆ acetonitrile solutions on glassy carbon electrode at 100 mVs⁻¹using1mmol L^{-1} of 4[BF₄], started in both positive and negative directions.

Figure S-35. Comparative cyclic voltammograms obtained in 0.1 mol L^{-1} Bu₄NPF₆ solutions on glassy carbon electrode at 100 mVs⁻¹using 1 mmol L^{-1} solutions of **TBAB** (Tetrabutylammonium bromide) (teal), 2a[Br] (red)2a [BF₄] (orange).

Figure S-36. Comparative cyclic voltammograms obtained in 0.1 mmol L⁻¹ Bu₄NPF₆ solutions on glassy carbon electrode at 100 mVs-1 (negative direction) using 1 mmol L⁻¹ solutions of **2a**[Br] (red), **2b**[Br] (green), **4** [Br] (blue) and the corresponding precursors salts **1a**, **1b** and **3** (black)

Compound	Пар	IVap	IIIcp
2a [Br]	0.32	-0.50	-1.59
1 a	0.33	-0.77	-1.92
2b [Br]	0.29	-0.76	-1.51
1b	0.31	-0.87	-1.97
4 [Br]	0.37	-0.34	-1.21
3	0.37	-0.51	-1.42

Table S2. Potential values of IIap (assigned to Bromide anion), IVap /IIIcp (assigned to heterocyclic cation).

Figure S-37. Cyclic voltammograms to calculate the potential onset of oxidation and reduction for **2a[Br]**

Figure S-38. Cyclic voltammograms to calculate the potential onset of oxidation and reduction for **2b**[Br].

Figure S-39. Cyclic voltammograms to calculate the potential onset of oxidation and reduction for 4[Br].

Figure S-40. Cyclic voltammograms to calculate the potential onset of oxidation and reduction for **2a[BF**₄]

Figure S-41. Cyclic voltammograms to calculate the potential onset of oxidation and reduction for $2b[BF_4]$.

Figure S-42. Cyclic voltammograms to calculate the potential onset of oxidation and reduction for **4**[BF₄]

Computational Section: Optimized geometries

Compound 2a'

11			
С	-1.25996300	1.72902700	0.26639200
С	-0.68413600	0.92946700	-0.78980300
С	-1.70659800	0.75380200	-1.79737600
С	-2.87043500	1.45896300	-1.37885300
С	-2.59546000	2.05782200	-0.10669700
Н	-0.76850300	2.01871100	1.18733800
Н	-1.59177100	0.18524700	-2.71260500
Н	-3.81264100	1.50352900	-1.91151200
Н	-3.29792800	2.62651000	0.49084800
Fe	-2.35170100	-0.00150400	0.00436300
С	-3.94533600	-1.31110100	0.12075600
С	-2.75295400	-2.02007900	-0.23160000
С	-3.72839200	-0.67937800	1.38631500
Н	-4.84318500	-1.23655200	-0.48117200
С	-1.80003600	-1.82631200	0.81929100
Н	-2.59021900	-2.57939200	-1.14510900
С	-2.40026300	-0.99740000	1.81833200
Н	-4.43314900	-0.04386700	1.90912200
Н	-0.78595800	-2.20793200	0.83629100
Н	-1.92479500	-0.64944600	2.72750200
С	0.63412300	0.33806400	-0.86034500
Н	0.77390500	-0.37203200	-1.67474900
С	1.67001400	0.64249100	-0.03616600
Н	1.52301400	1.40231000	0.72454200
С	2.97400800	0.01226900	-0.11361300
Ν	4.04368200	0.61466800	0.50560800
С	3.20958500	-1.20560800	-0.77831400
С	5.28444000	0.06487400	0.47621600
С	4.47415700	-1.76517900	-0.82311900
Н	2.37517000	-1.71715800	-1.24330800
Н	6.05850900	0.61698000	0.99506400
Н	4.63350300	-2.70551100	-1.34312500
С	5.53715800	-1.11870700	-0.18014000
Н	6.54313900	-1.52306100	-0.17988300
С	3.87165500	1.89944300	1.21100200
Н	3.44468700	2.63712700	0.52980600
Н	4.84757700	2.24164100	1.54964700
Н	3.21769500	1.76458600	2.07494500

Excited State 2: Singlet-A 2.0545 eV 603.47 nm f=0.0871 <S**2>=0.000

73 -> 77	-0.25597
73 -> 78	-0.10274
74 -> 75	0.51127
74 -> 76	0.12288
74 -> 77	0.10658
74 -> 78	-0.32788

Excited State	7: Singlet-A	3.1418 eV 394.63 nm	f=0.7735	<s**2>=0.000</s**2>
72 -> 75	0.65690			
73 -> 77	0.15351			
74 -> 76	0.14901			

73 HOMO-1

74 HOMO

75 LUMO

78 LUMO+3

Compound 2b'

1 1			
С	-0.94539300	-1.19862000	-0.38024900
С	-1.61736200	-1.58085700	0.84006500
С	-2.96435000	-1.91792200	0.51766400
С	-3.15152500	-1.73275100	-0.89023300
С	-1.92143400	-1.27677400	-1.44453600
Н	-1.17814100	-1.60078400	1.82996700
Н	-3.72708100	-2.22441500	1.22337400
Н	-4.07805600	-1.87736000	-1.43269800
Н	-1.73513600	-1.03035200	-2.48334600

Fe	-2.	55458700	0.04912600	-0.00332500
С	-2.	82831900	1.89470500	-0.89583900
С	-4.	06128700	1.42087200	-0.34421000
С	-1.	88093400	2.00096900	0.17190300
Н	-2.	63952800	2.11353400	-1.93999400
С	-3.	87456300	1.23113400	1.06168900
Н	-4.	96657900	1.20702300	-0.89984000
С	-2.	52456700	1.58770100	1.38102900
Н	-0.	84390000	2.29993800	0.07527100
Н	-4.	61377500	0.85019300	1.75632400
Н	-2.	06440700	1.52992400	2.36016700
С	0.	42257900	-0.76211800	-0.56014100
Н	0.	64851600	-0.35754200	-1.54657800
С	1.	40364900	-0.85181000	0.37469300
Н	1.	17409700	-1.28168900	1.34862600
С	2.	77586100	-0.42313600	0.19235800
С	3.	70435700	-0.60702800	1.24186000
С	3.1	27631200	0.17912400	-0.98823200
С	5.	01907000	-0.21882400	1.10022100
Н	3.	39587100	-1.05948600	2.17913700
С	4.	59765200	0.54465400	-1.07782300
Н	2.	64147500	0.36759700	-1.84683500
Ν	5.	45862000	0.34717000	-0.04672100
Н	5.	75357200	-0.34764000	1.88650000
Н	5.	01723100	1.00567000	-1.96484500
С	6.8	86887900	0.74167000	-0.20233500
Н	7.	32553800	0.13951400	-0.99051200
Н	7.	38924800	0.57334400	0.73931000
Н	6.	91824100	1.79912800	-0.46783500
Dereite				
EXCIL	ed State 2:	Singlet-A	2.0052	ev 618.31 mm
1-0.1	72 -> 70	0 24415		
	73 - 78	-0.24413		
	74 - 2 73	0.04490		
	/4 -> //	0.32005		
Fvoi+	od State 7.	Singlot-1	3 0606	017 103 02 mm
f=n a	$265 < 3 \times 10^{-1}$	SINGLEC-A	5.0090	Ev 403.92 IIII
r=0.9	72 -> 75	0 67027		
	73 - 78	0.07027		
	/ 5 - / 10	0.12900		

73 HOMO-1

74 HOMO

Compound 4'

1 1								
C		1.65250800	0.54	168200	-1	.107104	00	
C		2.15152400	1.69	127900	-0	.388109	00	
C		3.49692400	1.91	796000	-0	.797400	00	
C		3.85739400	0.90	992500	-1	.748283	00	
C		2.73547900	0.05	364200	-1	932708	0.0	
H		1 60230400	2.27	543800	0	340133	00	
Н		4 15080000	2 69	393700	-0	417805	00	
Н		4 82756300	0.79	716000	-2	216738	00	
Н		2 68468900	-0.81	309400	-2	581017	00	
Fe		3 29392700	0.02	786000	0	048072	00	
C		3 80939800	-1 91	249100	0	559374	00	
C		4 93197900	-1 03	926900	0	722264	00	
C		2 75896000	-1 44	234200	1	410141	00	
Н		3 75533800	-2 76	266800	-0	109962	00	
C		4 57408800	-0 03	019800	1	671314	00	
Ч		5 87277900	-1 10	703600		189320	00	
C		3 22886000	-0 27	834200	2	095771	00	
Ч		1 76798500	-1 87	252100	- 1	.000111	00	
н Н		5 19725900	1.07	903200	1	983755	00	
н Н		2 65931900	0.75	<i>4</i> 21900	2	793014	00	
C		2.05951900	-0.02	620000	_1	019673	00	
L L		0.33301200	_1 04	020000	_1	538/21	00	
C		-0 73/89/00	0 45	127700	_0	101738	00	
U U		-0 63196200	1 13	668000	0	. 404/30	00	
C		-2 03083200	_0 19	176500	-0	326227	00	
C		-3 21878200	0.19	10000	0	0/1/72	00	
C		-3.21070200	_1 55	791500	_0	500000	00	
C		-2.19304000	-1.55	014400	0_	108085	00	
C		-3 43627700	-2 15	806500	_0	510673	00	
U U		-3.43027700 -1.34045000	-2.10	151700	-0	020102	00	
П N		-1.54945000	-2.19	265700	-0	107251	00	
IN LI		-3 56238700	_3 21	507200	_0	72/255	00	
C C		-3 20183400	1 93	103200	0	33/5/8	00	
L L		-2 27004200	2 18	527500	0	281285	00	
п		-2.27004200	2.40	927500	0	684030	00	
L L		-4.31016300	2.00	285700	0	004030 007070	00	
C C		-5 58109600	1 92	130100	0	752885	00	
L L		-6 48664200	2 15	935900 935900	1	028381	00	
C C		-5 6/979100	2.4J 0.57	488500		167631	00	
L L		-6 60/9/600	0.07	502800	0	521605	00	
11 U		-6 53761500	_1 74	392000	_0	030336	00	
C		-5 83170700	-2 19	659500	-0	133120	00	
L L		-6 23561500	_2.15	836100	0	880895	00	
11 U		-5 66078700	_3 23	38/100	_0	A151A2	00	
п		-3.00078700	-3.23	304100	-0	.413142	00	
Excited State	2:	Singlet	-A	1.8776	eV	660.34	nm	f=0.1696
<s**2>=0.000</s**2>								
86 -> 91		-0.18215						
87 -> 88		0.60531						
87 -> 90		0.17331						

87 -> 92	0.20896			
Excited State	6: Singlet-A	2.7685 eV	447.85 nm	f=0.7363
<s**2>=0.000</s**2>				
84 -> 88	-0.20464			
84 -> 92	-0.11356			
85 -> 88	0.62683			
86 -> 91	-0.16457			

85 HOMO-2

87 HOMO

