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Experimental Methods 

Chemicals and reagents 

Itaconic acid (IA) is obtained from Sigma Aldrich. Ethylenediamine (EDA) was purchased from 

Qualigens. Quinine sulfate (98%, suitable for fluorescence) was supplied by Fluka. KCl was 

used to adjust the ionic strength for ionic strength susceptibility experiments and that was 

purchased from Qualigens. For pH dependent fluorescence studies, pH of the N-CDs solution 

was adjusted using sodium hydroxide and sulfuric acid, both were purchased from Qualigens. 

The metal ion salts were purchased from Sigma-Aldrich. Cellulose ester dialysis membrane 

(Spectra/Por, Float-A-Lyzer G2, 1KD MWCO) was purchased from Spectrum Labs. Deionized 

Water (DIW) was obtained from a Aquelix 5 water purification system, and used throughout the 

work. Water samples from various sources were collected to check the sensing ability of the CDs 

at different systems. Mineral water (MW) is obtained from Bisleri, India. Pond water (PW) is 

collected from the lotus pond of Adhipurishwarar temple, Pallikaranai, Chennai, India (12°56'5" 

N, 80°12'15" E). Lake water (LW) and sea water (SW) were collected from the Velachery lake, 

Chennai, India (12°59'15" N, 80°30'45" E), and from the Marina beach, Chennai, India 

(13°03'15" N, 80°17'01" E) respectively. Tap water (TW) sample is obtained from our lab. The 

water samples were filtered through a membrane (pore size: 0.45 m) filter paper and 

centrifuged at 15,000 rpm for 30 min before analysis. The pH of water samples were adjusted to 

pH 7 by adding either dil. HCl or NaOH. KSCN used for colorimetric analysis of trace Fe3+ was 

purchased from Qualigens. 

Instruments used for characterization 

The size, morphology, and the selected area electron diffraction (SAED) pattern of the as 

prepared CDs were measured using a FEI Tecnai-G2 TEM instrument. Prior to TEM 

measurements, the synthesized CDs were carefully deposited onto a 400-mesh C-coated Cu grid 

and the excess solvents were evaporated at ambient temperature and pressure. Raman spectrum 

was recorded using a Laser Raman microscope-RAMAN 11i (Nanophoton Corp., Japan) by 

excitation at 532 nm. XPS measurements were obtained using Thermoscientific, MULTILAB 

2000 spectrometer with monochromatized Al Kα X-rays (energy: 1486.6 eV). Spectra in the 

required binding energy range were collected, and an average spectrum was taken. The binding 

energy was calibrated with respect to the adventitious C 1s feature. The surface functional 
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groups on CDs were identified using Bruker, Vertex 70 Fourier transform infrared spectrometer 

at ATR mode.  

Instruments used for photophysical investigation 

UV-Vis absorption spectrum was recorded with Cary 100 Bio UV-Visible double beam 

spectrophotometer.  PL, excitation and 3D contour spectra were recorded by a HORIBA JOBIN 

YVON Fluoromax 4P spectrofluorometer. The relative fluorescence quantum yield (QY) was 

calculated by comparing the integrated PL intensities (excited at 355 nm) and the absorbance 

values of CDs at 355 nm with those of the reference quinine sulfate. The fluorescence decay 

measurements were carried out using time correlated single photon counting (TCSPC) technique 

with microchannel plate photomultiplier tube (MCP-PMT) as a detector and a 375 nm (IRF: 229 

ps)  light emitting diode (LED) and second harmonic output (385 nm) of Ti-Sapphire 

femtosecond laser (IRF: 50 ps) as excitation sources. The TCSPC data analysis was carried out 

by the software provided by IBH (DAS-6), which is based on reconvolution technique using 

iterative non-linear least square methods. Quality of the fit is normally identified by the reduced 

2, weighed residuals, and the autocorrelation function of the residuals. The intensity-weighted 

mean lifetime (τmean), the mean time delay of photon emission after the picosecond laser pulse 

was calculated according to 

t����  = �
∑ ��t�

�

∑ ��t�
� 

Where, the αi represents the fractional weights of the various decay time components, τi 

of the multi-exponential fitting.  

Microwave synthesis of luminescent N-CDs 

About 1g of IA was added to 20 mL of 15 % aqueous EDA in a 250 mL beaker. The beaker is 

then kept in a domestic microwave oven at 600 W for 2 min and 50 s. Then the beaker is allowed 

to cool naturally. Appearance of concentrated yellow solution infers the formation of CDs. The 

solution is dried and re-dissolved in 20 mL of ethanol. Dil. H2SO4 is then added drop-wise to 

precipitate the unreacted EDA as ethylene diammonium sulfate. It is then filtered through a 

Whatman 40 grade filter paper. The resultant clear yellow filtrate is then transferred into a 

polycarbonate centrifuge tube and subjected to centrifugation (REMI) at 15,000 rpm for 20 
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Centrifugation
12,000 rpm, 20 min.

Itaconic acid in 15 % 
aqueous EDA

MWI, 600 W, 
2 min, 50 s. EtOH

Dialysis, 48 h

H2SO4

Daylight
365 nm UV

minutes in order to remove larger particles. The resulting clear centrifugate is then transferred 

into a pre-treated, cellulose ester dialysis membrane of 10 mL capacity. Dialysis was carried out 

for 48 h to remove any small molecules and products due to partial carbonization. The outer 

buffer was changed for every 4 hrs. Then the dialysate is collected and dried under vacuum using 

Equitron-Roteva, India to obtain solid CDs. Desired amount of obtained CDs were re-dissolved 

in water and used for further studies.  

 

 

 

 

Scheme S1. Schematic representation for the synthesis of N-CDs from IA. 
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 Scheme S2. Schematic 
illustration for the formation of 

N-CDs from IA and EDA. 
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S. No. 
MW Power 

(W) 

Time of 

Irradiation 
% of EDA QY (%) 

1 600 3 min 5 sec 5 24.7 

2 600 3 min 15 sec 10 27.9 

3 600 2 min 50 sec 15 29.9 

4 600 3 min 20 sec 20 24.2 

Table S1. Optimization of synthetic conditions for the production of N-CDs from IA. 

Figure S1. EDAX Spectrum of N-CDs showing the presence of C, N, and O. 
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S. 
No. 

Nitrogen Precursor Synthesis Method % N Ref. 

1 PEG-diamine Hydrothermal Trace 1 

2 EDA Hydrothermal Trace 2 

3 EDA Hydrothermal Trace 3 

4 Tris Hydrothermal Trace 4 

5 Monkey Grass Hydrothermal NA 5 

6 Histidine Microwave-assisted Hydrothermal NA 6 

7 Ammonia Hydrothermal NA 7 

8 Lemon Juice Hydrothermal NA 8 

9 Guanidinium chloride Heating NA 9 

10 
Ortho-
phosphorylethanolamine 

Hydrothermal NA 10 

11 Egg Shell Membrane Microwave 1.60 11 

12 tribute chrysanthemum Hydrothermal 1.98 12 

13 EDA Hydrothermal 3.24 13 

14 Methionine Hydrothermal 4.02 14 

15 Coriander Leaves Hydrothermal 4.07 15 

16 Garlic Hydrothermal 4.32 16 

17 L-Cysteine Hydrothermal 4.85 17 

18 ZIF-8C (MOF-derived 
material) 

Acid Vapour Cutting 4.90 18 

Table S2. Comparison of nitrogen contents of previously reported N-CDs with that of IA-derived N-CDs. 
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19 Ammonium Citrate Hydrothermal 5.35 19 

20 Heparin Sodium Hydrothermal 5.49 20 

21 Ammonium Hydroxide Hydrothermal 6.37 21 

22 Ammonia Hydrothermal 6.80 22 

23 
Di-ammonium hydrogen 
phosphate 

Hydrothermal 7.73 23 

24 Nescafe instant coffee Extraction 7.8 24 

25 Urea Microwave 8.49 25 

26 L-Glutamate Hydrothermal 10.15 26 

27 L-Glutamic acid Microwave 10.42 27 

28 ATP Hydrothermal 11.59 28 

29 Chitosan + EDA Mircrowave 11.75 29 

30 Poly-ethyleneimine Hydrothermal 13.23 30 

31 EDTA + Urea Solvothermal 13.73 31 

32 
N-(b-aminoethyl)-c-
aminopropylmethyl-
dimethoxysilane 

Solvothermal 13.93 32 

33 BSA Hydrothermal 14.0 33 

34 EDA Microwave 14.0 
This 

Work 

35 EDA Solvothermal 17.5 34 

36 Chitosan + EDA Mircrowave 18.83 29 

 

*NA = Not Available (but the % N is less than that of IA-derived N-CDs by the visual 

inspection of XPS survey spectrum). 
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Quantum yield calculations 

Quinine sulfate, QS (0.1N H2SO4 as solvent; Known QY=0.54) was chosen as standard. The 

QYs of CDs (in water) were calculated by two different methods.  

1. The QY was determined by reference point method. 

QYsam = QYref (Isam/Iref) (Aref/Asam) (nsam/nref)
2           (1) 

Where I is the measured integrated emission intensity, n is the refractive index of the solvent, 

and A is the absorbance. The subscript “ref” refers to standard with known QY and “sam” for the 

sample. In order to minimize re-absorption effects, absorption in the 1cm fluorescence cuvette 

was kept below 0.10 at the excitation wavelength (355 nm). 

2.  The QY was determined by slope method using quinine sulfate as the reference:  

From the integrated photoluminescence intensity and the absorbance value [several values (less 

than 0.1 at excitation wavelength) built the curve] of the samples with that of the references.  

The equation is: 

QYsam = QYref (Ksam/Kref)(nsam/nref)
2      (2) 

Where, K is the slope determined by the curves and n is the refractive index. The subscript “ref” 

refers to the standards and “sam” refers to the unknown samples. For these aqueous solutions, 

nsam/nref = 1. 

Figure S2. Normalized PL spectra of N-CDs excited at various wavelengths. 
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Table S3. Slope method for the calculation of fluorescence quantum yield. 

 

 

 

 

 

 

 

 

Slopesam Sloperef (nsam/nref)
2 sam ref 

7.53  109 1.25  1010 1 0.546 0.324 

Graphical Quantum Yield 32.4% 

Figure S3. Slope method for the calculation of fluorescence quantum yield. 
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Table S4. Quantum yield calculated by reference point measurements (Using equation 1). 

 

The quantum yield obtained from graphical method and that is obtained from the mean of several 

reference point measurements are closely matches which shows the quality of the experiments. 

 

 

 

 

 

 

 

Quinine Sulfate N-CDs 

Isam/Iref Aref/Asam (nsam/nref)
2 ref sam 

Absorbance 

Integrated 

Area of 

Emission 

Spectrum 

Absorbance 

Integrated 

Area of 

Emission 

Spectrum 

0.031 4.06  108 0.017 1.28  108 0.314 1.759 1 0.54 0.298 

0.031 4.06  108 0.025 1.87  108 0.461 1.215 1 0.54 0.302 

0.031 4.06  108
 0.041 2.92  108 0.719 0.740 1 0.54 0.287 

0.031 4.06  108
 0.058 4.20  108 1.034 0.525 1 0.54 0.293 

0.031 4.06  108
 0.074 5.84  108 1.438 0.411 1 0.54 0.319 

Average 0.299 

Calculated Quantum Yield (%) after rounded off 30.0 
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Figure S4. (a) Emission wavelength dependent excitation spectra of N-CDs, (b) Emission 
wavelength dependent excitation spectra of N-CDs normalized at C-band, (c) Emission 
wavelength dependent excitation spectra of N-CDs normalized at S-band. 
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Figure S5. (a) Long-term luminescence stability of N-CDs. Effect of (b) UV irradiation, 
(c & d) pH, and (e) ionic strength on the luminescence intensity of N-CDs. 
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S. 

No. 

Fluorescence 

Probe 
Sensing Mechanism LOD Linear range Ref. 

1 CDs NA NA 1-100 M 35 

2 N,S-CDs 
Complexation followed by 

photoelectron transfer 
NA NA 20 

3 CDs 

Complexation followed by 

non-radiative electron or 

energy transfer 

20 M 20–200 M 23 

4 N-CDs 
Complexation followed by 
non-radiative electron 
transfer 

17.9 M NA 36 

5 N-CDs 
Electron or energy 
transfer 

10 M NA 27 

6 N-CDs Photoelectron transfer 10.8 M 50–100 M 37 

7 CDs Dynamic electron transfer 9.97 M 12.5–100 M 38 

8 CDs NA 6 M 0–166 M 39 

9 CDs 
Complexation followed by 

photoelectron transfer 
4.67 M 0–50 M 26 

10 N,S-CDs 
Complexation followed by 

photoelectron transfer 
4 M 25–500 μM 3 

11 N-CDs 
Combined static and 

dynamic quenching 
2.5 M 1–90 M 8 

12 CDs 
Complexation followed by 

photoelectron transfer 
2 M Up to 200 M 40 

13 CDs 
Complexation followed by 

photoelectron transfer 
1.3 M 0–50 M 4 

14 N-CDs 

Complexation followed by 

non-radiative electron or 

energy transfer 

0.96 M 0–100 M 7 

15 CDs NA 0.5 M NA 35 

16 N-CDs Complexation 0.45 M 1.6–333.3 M 25 

17 CDs Complexation 0.4 M 0–6 μM 15 

18 N,P-CDs Complexation 0.33 M 1–150 M 27 

19 CDs Photoelectron transfer 0.31 M 0–20 M 41 

20 N-CDs 
Complexation followed by 

photoelectron transfer 
0.18 M 0.01–1.8 ppm 28 

21 CDs 
Complexation followed by 

photoelectron transfer 
0.17 M 1–100 M 42 

Table S5. Comparison of IA-derived N-CDs with previously reported CDs towards the detection of Fe3+ ions. 
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22 CDs 
Complexation followed by 

photoelectron transfer 
0.16 M 0–100 M 43 

23 N-CDs 

Complexation followed by 

non-radiative electron or 

energy transfer 

0.14 M 0–100 M 44 

24 N-CDs 

Complexation followed 

by photoelectron 

transfer 

96 nM 0–300 M 
This 

Work 

25 CDs Aggregation 60 nM 0.2–100 M 45 

26 N,S,P-CDs 
Complexation followed by 

photoelectron transfer 
49.6 nM 0.1–6 μM 46 

27 CDs 
Complexation and ground 

state electron transfer 
35 nM 0–50 M 47 

28 N,S,P-CDs 
Complexation followed by 

photoelectron transfer 
31.5 nM 0.1–10 μM 46 

29 CDs Complexation 24.4 nM 0–5.3 μM 48 

30 CDs 
Complexation followed by 

dynamic quenching 
10 nM 1 nM–100 M 49 
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Determination of Limit of Detection (LOD) 

 The detection limit or limit of detection (LOD) of CDs towards Fe3+ was determined as 

follows: 

��� =
� ´ ���

�
 

S. No. 
Fluorescence 
Probe 

LOD Linear range Ref. 

1 NPNDs 100 M 0-30 M 50 

2 GO Nanosheets 17.5 M 14.3–143.2 μM 51 

3 Anthracene-appended amino acids 10 M 0–1.2 mM 52 

3 Anthracene-appended amino acids 10.9 M 0–1 mM 52 

4 GQDs 7.22 M 0-80 M 53 

5 Au Nanoclusters 3.5 M 5–1.28 mM 54 

6 Rhodamine-based fluorescent 
chemosensor 

1.5 M 0–20 μM 55 

7 Pyrazoline derivative 1.4 M  56 

8 2,5-Diphenylfuran and 8-
hydroxyquinoline 

0.97 M 0–150 M 57 

9 MOF Particles 0.90 M 3–200 M 58 

10 Naphthalimide and coumarin 0.39 M 12–149 μM 59 

11 F-CNPs 0.32 M 0–20 μM 60 

12 Diaza-18-crown-6 ether with dual 
coumarins 

0.31 M 0–30 μM 61 

13 Aminoantipyrine 0.21 M 1–20 μM 62 

14 Ag Nanoclusters 0.12 M 0.5–20 M 63 

15 N-CDs 96 nM 0–300 M 
This 

Work 

16 N-GQDs 80 nM 1–70 M 18 

17 CDs 10 nM 1 nM–100 M 49 

Table S6. Comparison of IA-derived N-CDs with other fluorescence probes reported for the determination of 
Fe3+ ions. 
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 LOD = 96 nM

R
2
 = 0.99

Slope = -1.8 x 1010 M
-1

Where, K = 3, Sb1 is the standard deviation of the blank solution and S is the slope of the 

calibration curve.The standard deviation (Sbl) for ten subsequent measurements of fluorescence 

intensities of blank were calculated using the following equation: 

s =  �
S(� −  m)�

�
 

Where,  is standard deviation, x is blank measurements,  is the mean of all ten blank 

measurements, N is the total number of measurements viz. 10. 

 

 

 

 

 

 

 

 

 

 

 

 

Determination of trace Fe3+ in various field water samples 

Fe3+ is selectively complexes with thiocyanate ions to produce a red color iron thiocyanate 

complex.64,65 We have utilized this method to determine the concentration of trace Fe3+ ions in 

various field water samples. A series of standard ferric ion solutions were treated with 10 % 

KSCN solution in presence of 4 M HCl. The solutions are allowed to stand for 5 min to develop 

a red color. Same procedure is done for field water samples. The absorbance values of all the 

solutions are measured at 490 nm which is the absorbance of iron thiocyanate complex. A 

calibration curve is obtained by plotting the known concentrations of standard iron solutions 

against their absorbance. Then the absorbance values of field water samples are interpolated to 

obtain their concentrations.  

 

Figure S6. Calibration curve for the fluorimetric detection of Fe3+ ions. 
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Solution 
Conc. of Fe3+ 

(ppm) 

Absorbance @ 

490 nm 

Blank 0 0 

Standard 1 1 0.029 

Standard 2 3 0.120 

Standard 3 5 0.212 

Standard 4 7 0.315 

Standard 5 10 0.478 

Solution 
Absorbance @ 490 

nm 

Interpolated Conc. 

of Fe3+ (ppm) 

SW 0.015 0.32 

PW 0.038 0.83 

LW 0.015 0.32 

TW 0.054 1.17 

MW 0 0 

DIW 0 0 

Std 1Blank Std 2 Std 3 Std 4 Std 5 SW PW LW MW DIW TW

Figure S7. Photographs of standard Fe3+ solutions and various field waters on the addition of KSCN 
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Table S7. Data to obtain the calibration curve for the 
determination of unknown Fe3+ concentration. 

Figure S8. Calibration curve for the determination 
of unknown Fe3+ concentration. 

Table S8. Unknown Fe3+ concentrations obtained by the interpolation of absorbance values in the 
calibration curve 
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Table S9. Parameters obtained from the fitting of fluorescence decays in the absence and 
presence of Fe3+ ions. 

Analyte 
1 

(ns) 

2 

(ns) 

3 

(ns) 

A1 

(%) 

A2 

(%) 

A3 

(%) 

mean 

(ns) 
Red. 2 

N-CDs 
0.53 ± 

0.03 

2.61 ± 

0.05 

9.83 ± 

0.10 
7.35 39.52 53.13 6.33 1.13 

N-CDs + Fe3+ 
0.29 ± 

0.02 

1.34 ± 

0.03 

4.12 ± 

0.04 
10.99 45.88 43.13 2.44 1.11 
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