Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

SUPPLEMENTARY SECTION

Spectrum processing : Peak possibly omitted : 0.258 keV

Processing option : All elements analyzed (Normalised) Number of iterations = 4

Standard : O SiO2 1-Jun-1999 12:00 AM Si SiO2 1-Jun-1999 12:00 AM

Element	Weight%	Atomic%
0 1	FF 71	C0 02
UK	55./1	68.83
Si K	44.29	31.17
Totals	100.00	

Electron Image 1

Figure S1. Output of SEM analysis on AHP-MCM41@ and images of different area of the sample.

Spectrum processing : Peak possibly omitted : 0.259 keV

Processing option : All elements analyzed (Normalised) Number of iterations = 4 Standard : O SiO2 1-Jun-1999 12:00 AM

Si SiO2 1-Jun-1999 12:00 AM Fe Fe 1-Jun-1999 12:00 AM

			A A A A A A A A A A A A A A A A A A A	The second se
Element	Weight%	Atomic%		A CARGE AND STORY
	-		A SA	The state of
ОК	52.94	66.70	Phil Pr	1 AND A SWY
Si K	45.75	32.83	A A L	and the second s
Fe K	1.30	0.47	Card and Dealer and	
			- A 36. 2002	and the second second
Totals	100.00		Stand State Property	Martin Consta
			- 60μm	Electron Image 1

Figure S2. The output of SEM analysis on AHP-MCM41@ on a sample previously saturated with iron(III) (form solution at pH=2) and an image of one of them.

Figure 3S- Residuals (f_{sper} - f_{calc}) of the two fitting models as a function of time for the experimental points of figure 2.

	Log eta	р	n	т
FeOH ²⁺	-2.19	-1	0	1
Fe(OH) ₂ ⁺	-5.67	-2	0	1
Fe(OH)₃	-12.56	-3	0	1
Fe ₂ (OH) ₂ 4+	-2.95	-2	0	2
Fe ₃ (OH) ₄ ⁵⁺	-6.3	-4	0	3
Fe(OH)₃(am)	-4.891	-3	0	1
HEDTA ³⁻	10.948	1	1	0
H ₂ EDTA ²⁻	17.221	2	1	0
H₃EDTA¯	20.359	3	1	0
H ₄ EDTA	22.583	4	1	0
H₅EDTA ⁺	24.083	5	1	0
H ₆ EDTA ²⁺	23.859	6	1	0
Fe(EDTA) ⁻	27.8	0	1	1
Fe(EDTA)(OH) ²⁻	19.97	-1	1	1
Fe(HEDTA)	29.3	1	1	1
Fe ₂ (EDTA) ₂ (OH) ₂ ⁴	41.8	-2	2	2

Table 1S Reference values^{*} employed for α_M calculation. See text for details.

* For iron(III) hydrolysis, the selected values were found from Leslie Pettit and Gwyneth Pettit, SC-Database, Academic Software, extrapolating the most reliable literature values at I = 0. EDTA protonation and complexation constants are from Arthur E. Martell, Robert M. Smith - 1989 - Stability Constants, Chemical Society (London)

Complexation and protonation constant of the monomeric unit in solution

Experimental

Complex formation equilibria of AHP with Fe(III) were revisited[1S] since the published results were partial. Titrations were done in a thermostated glass cell, equipped with a magnetic stirrer, a DL 53 titrator, Mettler Toledo, with a combined DG 115-SC. Fe(III) complex formation constants were determined potentiometrically. Solutions were titrated with 0.1 M KOH at 25.0 °C, and 0.1 M KNO₃ ionic strength. The electrode was daily calibrated for hydrogen ion concentration by titrating HNO₃ with KOH in the above experimental conditions and the results were analysed with Gran procedure. [2S] The complex formation constants were studied using constant ligand concentration and 1:1, 1:2 and 1:3 metal/ligand molar ratios. Potentiometric data were processed with Hyperquad [3S] program. The reported log β values are referred to the overall equilibria: $mM + pH + nL \rightleftharpoons MH_pL_n$ (the charges are omitted), where *m* might also be 0, in the case of protonation equilibria, and *p* can be negative.

	$\log eta_{mnp}$	р	n	т	ref
HL	10.07	1	1	0	23
H₂L	19.16	2	1	0	23
H₃L	22.36	3	1	0	23
	$\log eta_{ ext{mnp}}$	р	n	т	ref
FeHL	26.42	1	1	1	This paper
FeH_2L_2	47.31	2	2	1	This paper
FeL₃	38.79	0	3	1	This paper
FeH_3L_3	65.06	3	3	1	This paper
FeH_2L_3	57.43	2	3	1	This paper

Table 2S Set of $\log\beta$ values to compare with those identified in the solid phase

[1S] R. Grazina, Ph.D. Thesis, Technical University of Lisbon (IST), Lisbon, Portugal, 2006

[2S] G. Gran, Analyst, 77 (1952) 661–671

[3S] P. Gans, A. Sabatini and A. Vacca, Talanta, 43 (1996) 1739–1753