Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting information

Exploring optical properties of La₂Hf₂O₇:Pr³⁺ nanoparticles under UV and X-ray excitations for potential lighting and scintillating applications

Jose Zuniga¹, Santosh K. Gupta^{1,2}, Madhab Pokhrel^{1,3}, Yuanbing Mao^{1,4*}

¹Department of Chemistry, University of Texas Rio Grande Valley, 1201 West University Drive,

Edinburg, Texas 78539, USA

²Radiochemistry Division, Bhabha Atomic Research Center, Mumbai, India, 400085

³Department of Physics, University of Texas Rio Grande Valley, 1201 West University Drive,

Edinburg, Texas 78539, USA

⁴School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley,

1201 West University Drive, Edinburg, Texas 78539, USA

*To whom correspondence should be addressed. Email: yuanbing.mao@utrgv.edu, Tel.: +1-956-

665-2986.

Figure S1. FTIR spectra of the La₂Hf₂O₇:xmol%Pr³⁺ (x = 0, 0.1, 0.2, 0.3, 0.5, and 1.0) NPs after calcinated at 900°C. Inset shows full range spectra depicting no peaks from OH or nitrogen.

Figure S2. (a) XPS spectra for core electrons of (a) La 3d, (b) Hf 4f, (c) Pr 3d, and (d) O 1s of the La₂Hf₂O₇:x% Pr³⁺ (x = 0, 0.1, 0.2, 0.3, 0.5, and 1.0) NPs.