Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

A Physico-chemical Investigation on Fluorine-Enriched Quinolines

Supporting Information

Fallia Aribi,^{a,b} Armen Panossian,^{a,b} D. Jacquemin,^c Jean-Pierre Vors,^{b,d} Serguy Pazenok,^{b,e} Frédéric Leroux^{a,b*} and Mourad Elhabiri^{a*}

^{*a.*} Université de Strasbourg, Université de Haute-Alsace, CNRS (ECPM), UMR 7042-LIMA, 25 Rue Becquerel, 67000 Strasbourg, France. Email: frederic.leroux@unistra.fr; elhabiri@unistra.fr

^b Joint laboratory Unistra-CNRS-Bayer (Chemistry of Organofluorine Compounds), France.

^cLaboratoire CEISAM, UMR CNRS 6230, Université de Nantes, 2, rue de la Houssinière, 44322 Nantes, Cedex 3, France.

^dBayer S.A.S., 14 Impasse Pierre Baizet, BP99163, 69263 Lyon Cedex 09, France.

^eBayer AG, Alfred-Nobel-Strass 50, 40789 Monheim, Germany.

Supplementary material

(53 pages including this one)

Scheme S1. Chemical structures of the fluorinated quinolines considered in this work.

Figure S1. Molecular orbitals (HOMO, HOMO-1, LUMO and LUMO+1) of naphthalene, quinoline and **1a** calculated using the B3LYP/6-311++G(2d,p)//B3LYP/6-311++G(d,p) level of theory.

Figure S2. Normalized absorption (black) and emission (blue) spectra of compound **1a** in 1,2dichloroethane. The origin band (0-0) energies of the two lowest lying ${}^{1}L_{a}$ and ${}^{1}L_{b}$ singlet states are indicated with red arrows. The ${}^{1}L_{b(0-0)}$ is observed as a sharp transition, while the ${}^{1}L_{a(0-0)}$ has been estimated by averaging the energies of the absorption and emission bands maxima, respectively.

Figure S3. Electronic absorption spectra of fluorinated (CHF₂, CHFCl, CF₃ or CHFCF₃) quinolines substituted at C2 and C4 positions (**1a**, **1b**, **1c**, **1d** and **1e**, see Scheme S1 for the corresponding chemical structures). Solvent: 1,2-dichloroethane; T = 25 °C.

Table S1. Absorption properties for quinoline derivatives (quinoline, **1a-e**) substituted at C2 and C4 positions by fluorinated groups.

Compound	π-π*				
	λ (nm)	ε (x 10 ³ M ⁻¹ cm ⁻¹)			
	278	3.167			
	289	3.134			
au in alina	294	3.154			
quinoine	302	3.688			
	306	3.634			
	314	4.395			
	288	sh			
15	298	3.869			
Id	309	3.777			
	321	2.876			
	289	sh			
16	299	4.256			
10	309	4.138			
	322	3.112			
	287	sh			
10	298	3.898			
10	309	3.778			
	322	2.904			
	285	sh			
1d	295	3.843			
10	308	3.732			
	321	3.067			
	287	sh			
10	297	4.142			
16	309	3.955			
	322	3.095			

Figure S4. Change of absorption spectra as a function of the fluorine substitution position: C6 (**2a**), C7 (**2b**) or C8 (**2c**) of a quinoline derivative bearing a CF₃ group at C2 position and a CHF₂ group at C4 position (**1a** as a scaffold reference). Solvent: 1,2-dichloroethane, T = 25.0(2) °C. The inset shows a spectral expansion from 250 nm to 350 nm.

Table S2. Electronic absorption properties for a quinoline derivative (**1a**) substituted by a fluorine group on either C6 (**2a**), C7 (**2b**) or C8 (**2c**) position and bearing a CF₃ group at C2 position and a CHF₂ group at C4 position (see Figure S4). Solvent: 1,2-dichloroethane, T = 25.0(2) °C.

Compound	Band III λ (ε)	Band I (¹L₀) λ (ε)	Band II (¹L₌) λ (ε)		
		287	(0.347)		
15	225 (1 20)	298	6 (0.387)		
Id	255 (4.25)	309	(0.378)		
		321	. (0.287)		
2a		283	(0.295)		
	233 (2.70)	295 (0.310)			
		309 (0.324)			
		322	. (0.332)		
		283 (0.318)			
2h	220 (2.00)	290 sh			
20	230 (3.00)	315	(0.331)		
		327	(0.306)		
20	228 (1 158)	306	(0.315)		
20	20 238 (4:438)		320 sh		
Solvent: 1,2-dichloroethane; $T = 25 \text{ °C}$; λ in nm; ε in x 10 ⁴ M ⁻¹ cm ⁻¹ .					
The errors on $\hat{\prime}$	ι and ϵ are given	as ± 1 nm and 10	0%, respectively.		

Figure S5. Change of absorption spectra as a function of the fluorine substitution position: C6 (**2d**) or C7 (**2e**) positions for a quinoline derivative bearing CHF_2 groups at both C2 and C4 positions (**1d** as a scaffold reference). Solvent: 1,2-dichloroethane, T = 25.0(2) °C. The inset shows a spectral expansion from 250 nm to 350 nm.

Table S3. Electronic absorption properties for a quinoline derivative (**1d**) substituted by fluorine group on either C6 (**2d**) or C7 (**2e**) positions and bearing CHF_2 groups at both C2 and C4 positions. Solvent: 1,2-dichloroethane, T = 25.0(2) °C.

Commound	Band III	Band I (¹ L _b)	Band II (¹ L _a)	
Compound	λ (ε)	λ (ε)	λ (ε)	
		2	.84 sh	
1d	224 (4 172)	295	6 (0.383)	
10	234 (4.172)	308	8 (0.372)	
		321	. (0.306)	
2d		284 (0.422)		
	232 (3.645)	294 (0.403)		
		309 (0.428)		
		322 (0.467)		
		282	2 (0.326)	
20	220 (2.074)	2	.88 sh	
20	229 (3.074)	312	2 (0.331)	
		325 (0.321)		
Solvent: 1,2-dichloroethane; $T = 25 \text{ °C}$; λ in nm; ε in x 10 ⁴ M ⁻¹ cm ⁻¹ .				
The errors on λ	, and ϵ are given	as ± 1 nm and 1	0%, respectively.	

Figure S6. Change of absorption spectra as a function of the trifluoromethoxy group position: C6 (**3a**) or C7 (**3b**) positions of a quinoline derivative bearing a CF₃ group at C2 position and a CHF₂ group in C4 position (**1a** as a scaffold reference). Solvent: 1,2-dichloroethane, T = 25.0(2) °C. The inset shows a spectral expansion from 250 nm to 350 nm.

Table S4. Electronic absorption properties for a quinoline derivative (**1a**) substituted by a trifluoromethoxy group at either C6 (**3a**) or C7 (**3b**) positions and bearing a CF_3 group at C2 position and a CHF_2 group at C4 position. Solvent: 1,2-dichloroethane, T = 25.0(2) °C.

Compound	Band III	Band I (¹ L _b)	Band II (¹ L _a)	
Compound	λ (ε)	λ (ε)	λ (ε)	
		287	' (0.347)	
1a	225 (1 20)	298	3 (0.387)	
	255 (4.29)	309	0 (0.378)	
		321 (0.287)		
3a		286 (0.355)		
	232 (3.422)	293 (0.354)		
		308 (0.333)		
		321 (0.291)		
		284	(0.352)	
3b	232 (3.422)	310 (0.296)		
		321	. (0.271)	
Solvent: 1,2-dichloroethane; $T = 25 \text{ °C}$; λ in nm; ε in x 10 ⁴ M ⁻¹ cm ⁻¹ .				
The errors on λ	, and ϵ are given	as ± 1 nm and 1	0%, respectively.	

Figure S7. Change of absorption spectra as a function of the trifluoromethoxy group position: C6 (**3c**), C7 (**3d**) or C8 (**3e**) positions of a quinoline derivative bearing CHF_2 groups at both C2 and C4 positions (**1d** as a scaffold reference). Solvent: 1,2-dichloroethane, T = 25.0(2) °C. The inset shows a spectral expansion from 250 nm to 350 nm.

Table S5. Electronic absorption properties for a quinoline derivative (**1d**) substituted by a trifluoromethoxy group at either C6 (**3c**), C7 (**3d**) or C7 (**3e**) positions and bearing CHF₂ groups at both C2 and C4 positions. Solvent: 1,2-dichloroethane, T = 25.0(2) °C.

Compound	Band III	Band I (¹ L _b)	Band II (¹ L _a)
Compound	λ (ε)	λ (ε)	λ (ε)
		2	84 sh
1d	22A (A 172)	295	(0.383)
	234 (4.172)	308	(0.372)
		321	(0.306)
		282	(0.344)
20	721 (2 110)	2	93 sh
30	231 (3.148)	307 (0.292)	
		320 (0.279)	
		280 (0.391)	
34	220 (2 007)	294 sh	
5 u	230 (3.897)	309 (0.323)	
		321 (0.306)	
		2	84 sh
30	221 (1 261)	294	(0.431)
56	234 (4.204)	306 (0.401)	
		319 (0.297)	
Solvent: 1,2-dic	hloroethane; T =	= 25 °C; λ in nm;	ϵ in x 10^4 M^{-1} cm^{-1}.
The errors on λ	and ε are given	as ± 1 nm and 10	0%, respectively.

Compound	Band III	Band I (¹ L _b)	Band II (¹ L _a)		
Compound	λ (ε)		λ (ε)		
		287 (0.347)			
1a	22E (1 20)	298	(0.387)		
Id	255 (4.29)	309	(0.378)		
		321	(0.287)		
		283	(0.295)		
22	222 (1 2Q)	295	(0.310)		
20	233 (4.29)	309	309 (0.324)		
		322 (0.332)			
		285 (0.354)			
30	222 (2 A2)	294 (0.354)			
5a	232 (3.42)	307 (0.333)			
		321	(0.291)		
		287 (0.230)			
4a	247 (3.17)	330 (0.456)	440 (0.026)		
		340 (0.499)			
52	270 (2.8)	312 (0.664)	406 (0 740)		
54	324 (0.723)				
Solvent: 1,2-dic	hloroethane; T	= 25 °C; λ in nm;	ϵ in x 10 ⁴ M ⁻¹ cm ⁻¹ .		
The errors on λ	and $\boldsymbol{\epsilon}$ are given	as ± 1 nm and 10	0%, respectively.		

Table S6. Absorption properties of 6-substituted quinoline derivatives bearing a CF_3 at C2 position and a CHF_2 at C4 position.

Table S7. ¹³C NMR chemical shifts of 6-substituted quinoline derivatives bearing a CF_3 at C2 position and a CHF_2 at C4 position (**1a** series). Solvent: $CDCl_3$; T = 298 K.

Compound	¹³ C δ (ppm)							
Compound	6-R	C ₂	C ₃	C ₄	C ₅	C ₆	C ₇	C ₈
1a	Н	147.94	114.14	140.33	123.44	130.06	131.39	131.29
2a	F	147.31	115.09	139.92	107.68	162.40	122.01	133.96
3 a	OCF ₃	148.41	115.36	140.46	113.97	149.50	125.35	133.66
4a	OMe	144.95	114.59	138.21	101.06	160.35	124.42	132.56
5a	NMe ₂	142.35	114.48	136.12	98.92	150.28	120.46	131.80

Table S8. ¹³C NMR chemical shifts of 6-substituted quinoline derivatives bearing CHF_2 at both C2 and C4 positions (**1d** series). Solvent: $CDCl_3$; T = 298 K.

Compound	¹³ C δ (ppm)							
Compound	6-R	C ₂	C ₃	C ₄	C ₅	C ₆	C ₇	C ₈
1d	Н	152.70	114.24	139.93	123.55	129.33	130.91	130.83
2d	F	152.09	115.28	139.56	107.84	162.01	121.43	133.46
3c	OCF ₃	153.23	115.56	140.06	114.32	148.97	124.89	133.17
4d	OMe	149.93	114.70	138.02	101.35	159.77	123.71	132.11
5b	NMe ₂	147.42	114.64	136.29	99.55	149.96	120.03	131.36

Figure S8. Variation of the ¹³C NMR shifts of the quinoline carbons as a function of the nature of the substituent at position C6 for the **1d**-derived compounds series. Solvent: $CDCl_3$; T = 298 K.

Table S9. ¹³C NMR chemical shifts of 7-substituted quinoline derivatives bearing CHF_2 at both C2 and C4 positions (**1d** series). Solvent: $CDCl_3$; T = 298 K.

Compound	¹³ C δ (ppm)							
Compound	7-R	C ₂	C ₃	C ₄	C₅	C ₆	C ₇	C ₈
1d	Н	152.70	114.24	139.93	123.55	129.33	130.91	130.83
2e	F	153.93	113.86	140.17	126	119.91	163.60	114.58
3d	OCF ₃	154.12	114.72	140.14	125.76	123.13	150.58	120.02
4e	OMe	152.86	111.80	139.56	124.33	122.45	161.45	108.24
5c	NMe ₂	152.95	109.73	139.30	124.08	107.26	151.69	118.49

Figure S9. Variation of the ¹³C NMR shifts of the quinoline carbons as a function of the nature of the substituent at position C7 for the **1d**-derived compounds series. Solvent: $CDCl_3$; T = 298 K.

Figure S10. Change in the absorption spectra as a function of the nature of the substituent at the C6 position (2d = F, $3c = OCF_3$, $4d = OCH_3$, $5b = NMe_2$) for a quinoline derivative bearing CHF₂ groups in both C2 and C4 positions (1d as a scaffold reference). Solvent: 1,2-dichloroethane, T = 25.0(2) °C. The inset shows a spectral expansion from 250 nm to 400 nm.

Table S10. Electronic absorption properties for 6-substituted quinoline derivatives (2d = F, $3c = OCF_3$, $4d = OCH_3$, $5b = NMe_2$) bearing CHF₂ groups at both C2 and C4 positions. Solvent: 1,2-dichloroethane, T = 25.0(2) °C.

Compound	Band III	Band I (¹ L _b)	Band II (¹ L _a)		
Compound	λ (ε)	λ (ε)	λ (ε)		
		284 sh			
1d	22A (A 172)	295	(0.383)		
	234 (4.172)	308	(0.372)		
		321	(0.306)		
		284	(0.422)		
2d	222 (2 645)	294	(0.403)		
20	232 (3.043)	309 (0.428)			
		322 (0.467)			
		282 (0.344)			
20	221 (2 140)	293 sh			
J	251 (5.140)	307 (0.292)			
		320	(0.277)		
		277 (0.303)			
4d	247 (2.874)	329 (0.402)	446 (0.093)		
		339 (0.443)			
56	260 (2 807)	311 (0.778)	100 (0 603)		
50	203 (2.897)	321 (0.820)	400 (0.053)		
Solvent: 1,2-dic	hloroethane; T =	= 25 °C; λ in nm;	ε in x 10 ⁴ M ⁻¹ cm ⁻¹ .		
The errors on λ	The errors on λ and ϵ are given as ± 1 nm and 10%, respectively.				

Figure S11. Change in the absorption spectra as a function of the nature of the substituent at the C7 position (2e = F, $3d = OCF_3$, $4e = OCH_3$, $5c = NMe_2$) for a quinoline derivative bearing CHF₂ groups at both C2 and C4 positions (1d as a scaffold reference). Solvent: 1,2-dichloroethane, T = 25.0(2) °C. The inset shows a spectral expansion from 250 nm to 400 nm.

Table S2	L1. Electronic absorption properties for 7-substituted quinoline derivatives (2e = F, 3d = OCF ₃ , 4e =
OCH ₃ , 5	$c = NMe_2$) bearing CHF ₂ groups at both C2 and C4 positions. Solvent: 1,2-dichloroethane, $T = 25.0(2)$
°C.	

Compound	Band III	Band I (¹ L _b)	Band II (¹ L _a)		
Compound	λ (ε)	λ (ε)	λ (ε)		
	224 (4 172)	284 sh			
1d		295	(0.383)		
10	234 (4.172)	308	(0.372)		
		321	(0.306)		
		282	(0.326)		
20	229 (2.074)	28	39 sh		
20	229 (3.074)	312 (0.331)			
		325 (0.321)			
	230 (3.896)	280 (0.391)			
34		295 sh			
54		309 (0.323)			
		321 (0.306)			
		271 sh			
4e	243 (3 968)	295 sh	_		
40	213 (3.300)	335 (0.464)			
		342 (0.456)			
50	270 (2 316)	300 (0.665)	405 (0 303)		
313 sh					
Solvent: 1,2-dich	loroethane; T =	= 25 °C; λ in nm;	ε in x 10 ⁴ M ⁻¹ cm ⁻¹ .		
The errors on λ	and ϵ are given	as ± 1 nm and 10	%, respectively.		

Spectrofluorimetric Studies

Figure S12. Fluorescence emission spectra of fluorinated (CHF₂, CHFCl, CF₃ or CHFCF₃) quinolines substituted at C2 and C4 positions (**1a**, **1b**, **1c**, **1d** and **1e**, see Scheme S1 for the corresponding chemical structures). Solvent: 1,2-dichloroethane; T = 25 °C. Emission and excitation band widths = 15 and 20 nm, respectively. The emission intensities have been normalized with respect to the absorbances of the quinoline solutions and therefore reflect the relative emission quantum yields. The absorbances at excitation wavelength are always below 0.1 to prevent inner filter effects.

Figure S13. Influence on the emission spectra of fluorine substitution on either C6 (**2a**), C7 (**2b**) or C8 (**2c**) positions of a quinoline derivative bearing a CHF₂ group at C2 and a CF₃ group at C4 position (**1a** as a scaffold reference). Solvent: 1,2-dichloroethane; T = 25 °C. Emission and excitation band widths = 15 and 20 nm, respectively; band-pass filter at 290 nm; 1% attenuator. The emission intensities have been normalized with respect to the absorbances of the quinoline solutions ($\lambda_{exc} = 300$ nm) and therefore reflect the relative emission quantum yields. The absorbances at excitation wavelength are always below 0.1 to prevent inner filter effects.

Figure S14. Influence on the emission spectra of trifluoromethoxy substitution on either C6 (**3c**), C7 (**3d**) or C8 (**3e**) positions of a quinoline derivative bearing a CHF₂ group at both C2 and C4 positions (**1d** as a scaffold reference). Solvent: 1,2-dichloroethane; T = 25 °C. Emission and excitation band widths = 15 and 20 nm, respectively; band-pass filter at 290 nm; 1% attenuator. The emission intensities have been normalized with respect to the absorbances of the quinoline solutions ($\lambda_{exc} = 300$ nm) and therefore reflect the relative emission quantum yields. The absorbances at excitation wavelength are always below 0.1 to prevent inner filter effects.

Figure S15. Influence on the emission spectra of the C7- and C8-substitution (**6b**, C7 = F, C8 = CH₃; **7b**, C7 = Cl, C8 = CH₃) of a quinoline derivative bearing CHF₂ groups at both C2 and C4 positions (**1d** as a scaffold reference). Solvent: 1,2-dichloroethane; T = 25 °C. Emission and excitation band widths = 15 and 20 nm, respectively; band-pass filter at 290 nm; 1% attenuator. The emission intensities have been normalized with respect to the absorbances of the quinoline ($\lambda_{exc} = 300$ nm) solutions and therefore reflect the relative emission quantum yields. The absorbances at excitation wavelength are always below 0.1 to prevent inner filter effects.

Figure S16. Influence on the emission spectra of the C7- and C8-substitution (**6a**, C7 = F, C8 = CH₃; **7a**, C7 = Cl, C8 = CH₃) of a quinoline derivative bearing a CHF₂ group at C2 position and a CF₃ group at C4 position (**1a** as a scaffold reference). Solvent: 1,2-dichloroethane; T = 25 °C. Emission and excitation band widths = 15 and 20 nm, respectively. The emission intensities have been normalized with respect to the absorbances of the quinoline solutions and therefore reflect the relative emission quantum yields. The absorbances at excitation wavelength are always below 0.1 to prevent inner filter effects.

Figure S17. Influence on the emission spectra of methoxy substitution on either C6 (**4a**), C7 (**4b**) or C8 (**4c**) positions of a quinoline derivative bearing a CHF₂ group at C2 and a CF₃ group at C4 positions (**1a** as a scaffold reference). Solvent: 1,2-dichloroethane; T = 25 °C. Emission and excitation band widths = 15 and 20 nm, respectively; band-pass filter at 290 nm; 1% attenuator. The emission intensities have been normalized with respect to the absorbances of the quinoline ($\lambda_{exc} = 300$ nm) solutions and therefore reflect the relative emission quantum yields. The absorbances at excitation wavelength are always below 0.1 to prevent inner filter effects.

Figure S18. Influence on the emission spectra of methoxy substitution on either C6 (**4d**), C7 (**4e**) or C8 (**4f**) positions of a quinoline derivative bearing a CHF₂ group at both C2 and C4 positions (**1d** as a scaffold reference). Solvent: 1,2-dichloroethane; T = 25 °C. Emission and excitation band widths = 15 and 20 nm, respectively; band-pass filter at 290 nm; 1% attenuator. The emission intensities have been normalized with respect to the absorbances of the quinoline ($\lambda_{exc} = 300$ nm) solutions and therefore reflect the relative emission quantum yields. The absorbances at excitation wavelength are always below 0.1 to prevent inner filter effects.

Figure S19. Influence on the emission spectra of dimethylamino substitution on the C6 (**5a**) position of a quinoline derivative bearing a CHF₂ group at C2 and a CF₃ group at C4 positions (**1a** as a scaffold reference). Solvent: 1,2-dichloroethane; T = 25 °C. Emission and excitation band widths = 15 and 20 nm, respectively; band-pass filter at 290 nm; 1% attenuator. The emission intensities have been normalized with respect to the absorbances of the quinoline ($\lambda_{exc} = 300$ nm) solutions and therefore reflect the relative emission quantum yields. The absorbances at excitation wavelength are always below 0.1 to prevent inner filter effects.

Figure S20. Influence on the emission spectra of dimethylamino substitution on either C6 (**5b**), C7 (**5c**) positions of a quinoline derivative bearing a CHF₂ group at both C2 and C4 positions (**1d** as a scaffold reference). Solvent: 1,2-dichloroethane; T = 25 °C. Emission and excitation band widths = 15 and 20 nm, respectively; band-pass filter at 290 nm; 1% attenuator. The emission intensities have been normalized with respect to the absorbances of the quinoline ($\lambda_{exc} = 300$ nm) solutions and therefore reflect the relative emission quantum yields. The absorbances at excitation wavelength are always below 0.1 to prevent inner filter effects.

Figure S21. Influence on the emission spectra of the substitution on the C7 position for quinoline derivatives bearing a CF₃ at C2 and a CHF₂ at C4 positions (derivative **1a** as a scaffold reference). Solvent: 1,2-dichloroethane, T = 25.0(2) °C. Emission and excitation band widths = 15 and 20 nm, respectively; bandpass filter at 290 nm; 1% attenuator. The emission intensities have been normalized with respect to the absorbances of the quinoline ($\lambda_{exc} = 300$ nm) solutions and therefore reflect the relative emission quantum yields. The absorbances at excitation wavelength are always below 0.1 to prevent inner filter effects.

Figure S22. Influence on the emission spectra of the substitution on the C6 position for quinoline derivatives bearing a CHF₂ group at both C2 and C4 positions (derivative **1d** as a scaffold reference). Solvent: 1,2-dichloroethane, T = 25.0(2) °C. Emission and excitation band widths = 15 and 20 nm, respectively; band-pass filter at 290 nm; 1% attenuator. The emission intensities have been normalized with respect to the absorbances of the quinoline ($\lambda_{exc} = 300$ nm) solutions and therefore reflect the relative emission quantum yields. The absorbances at excitation wavelength are always below 0.1 to prevent inner filter effects.

Figure S23. Influence on the emission spectra of the substitution on the C7 position for quinoline derivatives bearing CHF₂ at both C2 and C4 positions (derivative **1d** as a scaffold reference). Solvent: 1,2-dichloroethane, T = 25.0(2) °C. Emission and excitation band widths = 15 and 20 nm, respectively; bandpass filter at 290 nm; 1% attenuator. The emission intensities have been normalized with respect to the absorbances of the quinoline ($\lambda_{exc} = 300$ nm) solutions and therefore reflect the relative emission quantum yields. The absorbances at excitation wavelength are always below 0.1 to prevent inner filter effects.

Figure S24. Cyclic voltammograms of **1a** and **1d** measured at a sweep rate of 200 mV s⁻¹. Solvent: 1,2-dichloroethane; T = 25.0(2) °C; I = 0.1 M (NBu₄BF₄); reference electrode = KCl(3 M)/Ag/AgCl; working electrode = glassy carbon disk of 0.07 cm² area. The compounds concentrations are about 1 mM.

Figure S25. Influence on the cyclic voltammograms of the fluorine substitution at the C6 (**2d**) and C7 (**2e**) positions of a quinoline derivative bearing CHF_2 groups at both C2 and C4 positions (**1d** as a scaffold reference) as well as the introduction of a methyl group at the C8 position (**6b**). $v = 200 \text{ mV s}^{-1}$; solvent: 1,2-dichloroethane; T = 25.0(2) °C; I = 0.1 M (NBu₄BF₄); reference electrode = KCl(3 M)/Ag/AgCl; working electrode = glassy carbon disk of 0.07 cm² area. The compounds concentrations are about 1 mM.

Figure S26. Influence on the cyclic voltammograms of the trifluoromethoxy substitution at the C6 (**3c**) and C7 (**3d**) positions of a quinoline derivative bearing CHF_2 groups at both C2 and C4 positions (**1d** as a scaffold reference). $v = 200 \text{ mV s}^{-1}$; solvent: 1,2-dichloroethane; T = 25.0(2) °C; I = 0.1 M (NBu₄BF₄); reference electrode = KCl(3 M)/Ag/AgCl; working electrode = glassy carbon disk of 0.07 cm² area. The compounds concentrations are about 1 mM.

Figure S27. Influence on the cyclic voltammograms of the methoxy substitution at the C6 (**4d**) and C7 (**4e**) positions of a quinoline derivative bearing CHF_2 groups at both C2 and C4 positions (**1d** as a scaffold reference). $v = 200 \text{ mV s}^{-1}$; solvent: 1,2-dichloroethane; T = 25.0(2) °C; I = 0.1 M (NBu₄BF₄); reference electrode = KCl(3 M)/Ag/AgCl; working electrode = glassy carbon disk of 0.07 cm² area. The compounds concentrations are about 1 mM.

Figure S28. Influence on the cyclic voltammograms of the dimethylamino substitution at the C6 (**5b**) and C7 (**5c**) positions of a quinoline derivative bearing CHF_2 groups at both C2 and C4 positions (**1d** as a scaffold reference). $v = 200 \text{ mV s}^{-1}$; solvent: 1,2-dichloroethane; T = 25.0(2) °C; I = 0.1 M (NBu₄BF₄); reference electrode = KCl(3 M)/Ag/AgCl; working electrode = glassy carbon disk of 0.07 cm² area. The compounds concentrations are about 1 mM.

Figure S29. Influence on the cyclic voltammograms of the halogen substitution (F, **6b** and Cl, **7b**) at the C6 positions of a quinoline derivative bearing CHF_2 groups at both C2 and C4 positions and a CH_3 group at the C8 position (**1d** as a scaffold reference). $v = 200 \text{ mV s}^{-1}$; solvent: 1,2-dichloroethane; T = 25.0(2) °C; I = 0.1 M (NBu₄BF₄); reference electrode = KCl(3 M)/Ag/AgCl; working electrode = glassy carbon disk of 0.07 cm² area. The compounds concentrations are about 1 mM.

Figure S30. NMR (¹H, ¹³C and ¹⁹F) and characterization data of compound 1a.

4-(Difluoromethyl)-2-(trifluoromethyl)quinoline 1a

¹H NMR (400 MHz, CDCl₃) $\delta_{H} = 8.33$ (d, ³ $J_{H-H} = 8.5$ Hz, 1H, C₈H), 8.16 (d, ³ $J_{H-H} = 8.5$ Hz, 1H, C₅H), 7.93 (s, 1H, C₃H), 7.92 – 7.87 (m, 1H, C₇H), 7.80 (t, ³ $J_{H-H} = Hz$, 1H, C₆H), 7.22 (t, ² $J_{H-F} = 54.2$ Hz, 1H, C₄*CHF*₂) ppm. ¹⁹F NMR (376 MHz, CDCl₃) $\delta_{F} = -67.66$ (s, C₂*CF*₃), -115.53 (d, ² $J_{F-H} = 54.1$ Hz, C₄*CHF*₂) ppm. ¹³C NMR (101 MHz, CDCl₃) $\delta_{C} = 147.94$ (q, ² $J_{C-F} = 35.3$ Hz, C₂), 147.87 (t, C₉), 140.33 (t, ² $J_{C-F} = 22.3$ Hz, C₄), 131.39 (s, C₇), 131.29 (s, C₈), 130.06 (s, C₆), 125.09 (s, C₁₀), 123.44 (s, C₅), 121.33 (q, ¹ $J_{C-F} = 275.73$ Hz, C₂*CF*₃), 114.14 (td,

= 7.9, ${}^{3}J_{C-F}$ = 2.1 Hz, C₃), 112.74 (t, ${}^{1}J_{C-F}$ = 241.5 Hz, C₄*CHF*₂) ppm. HRMS (ESI positive) for C₁₁H₇F₅N [M⁺]: calcd 248.0493, found 248.0520. C₁₁H₆F₅N (247): calcd (%) N 5.66, C 53.40, H 2.43, found N 5.73, C 53.83, H 2.58. MP: 64 – 65.1 °C.

Figure S31. NMR (¹H, ¹³C and ¹⁹F) and characterization data of compound 2a.

4-(Difluoromethyl)-6-fluoro-2-(trifluoromethyl)quinoline 2a

¹H NMR (400 MHz, CDCl₃) $\delta_{H} = 8.32$ (dd, ${}^{3}J_{H-H} = 9.3$, ${}^{4}J_{H-F} = 5.5$ Hz, 1H, C₈H), 7.93 (s, 1H, C₃H), 7.81 – 7.73 (m, 1H, C₅H), 7.67 – 7.66 (m, 1H, C₇H), 7.12 (t, = 54.1 Hz, 1H, C₄CHF₂) ppm. ¹⁹F NMR (376 MHz, CDCl₃) $\delta_{F} = -67.69$ (s, C₂CF₃), 105.84 - -105.77 (m, C₆F), -115.61 (d, {}^{2}J_{F-H} = 54.1 Hz, C_{4}CHF_{2}) ppm. ¹³C NMR (101 MHz, CDCl₃) $\delta_{C} = 162.40$ (d, ${}^{1}J_{C-F} = 254.3$ Hz, C₆), 147.31 (qd, ${}^{2}J_{C-F} = 35.7$, = 3.2 Hz, C₂), 145.05 (s, C₉), 139.92 (td, ${}^{2}J_{C-F} = 22.5$, ${}^{4}J_{C-F} = 6.2$ Hz, C₄), 133.96 ${}^{3}J_{C-F} = 9.8$ Hz, C₈), 126.06 (d, ${}^{3}J_{C-F} = 10.7$ Hz, C₁₀), 122.01 (d, ${}^{2}J_{C-F} = 26.0$ Hz,

121.24 (q, ${}^{1}J_{C-F}$ = 275.1 Hz, C₂*CF*₃), 115.17 – 115.02 (m, C₃), 112.74 (t, ${}^{1}J_{C-F}$ = 237.4 Hz, C₄*CHF*₂), 107.68 (d, ${}^{2}J_{C-F}$ = 24.1 Hz, C₅) ppm. HRMS (ESI positive) for C₁₁H₆F₆N [M⁺]: calcd 266.0399, found 266.0387. MP: 68.2 – 69.8 °C.

 ${}^{2}J_{H-F}$

⁶Ј_{С-F}

(d,

C₇),

Figure S32. NMR (¹H, ¹³C and ¹⁹F) and characterization data of compound 3a.

4-(Difluoromethyl)-6-(trifluoromethoxy)-2-(trifluoromethyl)quinoline 3a

¹H NMR (400 MHz, CDCl₃) $\delta_{H} = 8.39$ (d, ³ $J_{H-H} = 9.3$ Hz, 1H, C₈H), 7.97 (s, 2H, ₅H), 7.77 (dd, ³ $J_{H-H} = 9.3$, ⁴ $J_{H-H} = 1.9$ Hz, 1H, C₇H), 7.15 (t, ² $J_{H-F} = 54.0$ Hz, 1H, C₄CHF₂) ppm. ¹⁹F NMR (376 MHz, CDCl₃) $\delta_{F} = -57.72$ (s, C₆OCF₃), -67.79 (s, C₂CF₃), -115.31 (d, ² $J_{F-H} = 53.9$ Hz, C₄CHF₂) ppm. ¹³C NMR (101 MHz, CDCl₃) 149.50 (s, C₆), 148.41 (q, ² $J_{C-F} = 35.9$ Hz, C₂), 146.02 (s, C₉), 140.46 (t, ² $J_{C-F} =$ Hz, C₄), 133.66 (s, C₈), 125.52 (s, C₁₀), 125.35 (s, C₇), 121.12 (q, ¹ $J_{C-F} = 276.4$ C₂CF₃), 120.74 (q, ¹ $J_{C-F} = 260.6$ Hz, C₆OCF₃), 115.36 (td, ³ $J_{C-F} = 8.0$, ³ $J_{C-F} = 2.1$

C₃), 113.97 (s, C₅), 112.67 (t, ¹*J*_{C-F} = 242.0 Hz, C₄*CHF*₂) ppm. C₁₂H₅F₈NO (331): calcd (%) N 4.23, C 43.48, H 1.51, found N 4.20, C 43.77, H 1.83. MP: 42.2 – 43.8 °C.

Figure S33. NMR (¹H, ¹³C and ¹⁹F) and characterization data of compound 4a.

4-(Difluoromethyl)-6-methoxy-2-(trifluoromethyl)quinoline 4a

¹H NMR (400 MHz, CDCl₃) $\delta_{H} = 8.16$ (d, ³ $J_{H-H} = 9.3$ Hz, 1H, C₈H), 7.85 (s, 1H, C₃H), 7.50 (dd, ³ $J_{H-H} = 9.3$, ⁴ $J_{H-H} = 2.6$ Hz, 1H, C₇H), 7.29 (s, 1H, C₅H), 7.11 (t, = 54.3 Hz, 1H, C₄CHF₂), 3.97 (s, 3H, C₆OCH₃) ppm. ¹⁹F NMR (376 MHz, CDCl₃) $\delta_{F} = -67.30$ (s, C₂CF₃), -115.95 (d, ² $J_{F-H} = 54.4$ Hz, C₄CHF₂) ppm. ¹³C NMR (101 MHz, CDCl₃) $\delta_{C} = 160.35$ (s, C₆), 144.95 (q, ² $J_{C-F} = 35.4$ Hz, C₂), 144.11 (s, C₉), 138.21 (t, ² $J_{C-F} = 22.1$ Hz, C₄), 132.56 (s, C₈), 126.63 (s, C₁₀), 124.40 (s, C₇), 121.43 (q, ¹ $J_{C-F} = 274.7$ Hz, C₂CF₃), 114.59 (td, ³ $J_{C-F} = 8.1$, ³ J_{C-F}

2.3 Hz, C₃), 113.17 (t, ¹*J*_{C-F} = 241.1 Hz, C₄CHF₂), 101.06 (s, C₅), 55.88 (s, C₆OCH₃) ppm. C₁₂H₈F₅NO (277): calcd (%) N 5.05, C 51.95, H 2.88, found N 5.03, C 51.64, H 2.80. MP: 105.9 – 108.2 °C.

Figure S34. NMR (¹H, ¹³C and ¹⁹F) and characterization data of compound 5a.

4-(Difluoromethyl)-N,N-dimethyl-2-(trifluoromethyl)quinolin-6-amine 5a

¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ = 8.07 (d, ³J_{H-H} = 9.5 Hz, 1H, C₈H), 7.75 (s, 1H, CHF₂ C₃H), 7.43 (dd, ${}^{3}J_{H-H}$ = 9.5, ${}^{4}J_{H-H}$ = 2.8 Hz, 1H, C₇H), 7.07 (t, ${}^{2}J_{H-F}$ = 54.5 Hz, Me₂N C₄CHF₂), 6.84 (s, 1H, C₅H), 3.14 (s, 1H, C₆N(CH₃)₂) ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ_F = -66.90 (s, C₂CF₃), -117.13 (d, ²J_{F-H} = 54.7 Hz, C₄CHF₂) ppm. ¹³C NMR (101 MHz, CDCl₃) δ_{c} = 150.28 (s, C₆), 143.01 – 141.69 (m, C₂ + C₉), 5a Chemical Formula: C₁₃H₁₁F₅N₂ 136.12 (t, ${}^{2}J_{C-F}$ = 21.6 Hz, C₄), 131.80 (s, C₈), 127.25 (t, ${}^{3}J_{C-F}$ = 2.5 Hz, C₁₀), Exact Mass: 290,08 g/mol 121.98 (q, ${}^{1}J_{C-F}$ = 274.0 Hz, C₂CF₃), 120.46 (s, C₇), 114.48 (td, ${}^{3}J_{C-F}$ = 8.2, ${}^{3}J_{C-F}$ Yellow solid 2.3 Hz, C₃), 113.29 (t, ¹J_{C-F} = 240.4 Hz, C₄CHF₂), 98.92 (s, C₅), 40.46 (s, C₆N(CH₃)₂) ppm. C₁₃H₁₁F₅N₂ (290): calcd (%) N 9.65, C 53.75, H 3.79, found N 9.42, C 53.55, H 3.81. MP: 107.5 - 108.4 °C.

1H,

=

Figure S35. NMR (¹H, ¹³C and ¹⁹F) and characterization data of compound 1d.

2,4-Bis(difluoromethyl)quinoline 1d

¹H NMR (400 MHz, CDCl₃) $\delta_{H} = 8.23$ (d, ${}^{3}J_{H-H} = 8.5$ Hz, 1H, C₈H), 8.14 (d, ${}^{3}J_{H-H}$ 8.5 Hz, 1H, C₅H), 7.92 (s, 1H, C₃H), 7.86 (t, ${}^{3}J_{H-H} = 7.7$ Hz, 1H, C₇H), 7.74 (t, ${}^{3}J_{H-}$ 7.7 Hz, 1H, C₆H), 7.19 (t, ${}^{2}J_{H-F} = 54.3$ Hz, 1H, C₄*CHF*₂), 6.81 (t, ${}^{2}J_{H-F} = 55.1$ Hz, C₂*CHF*₂) ppm. ¹⁹F NMR (376 MHz, CDCl₃) $\delta_{F} = -114.46$ (d, ${}^{2}J_{F-H} = 55.1$ Hz, C₂*CHF*₂), -115.16 (d, ${}^{2}J_{F-H} = 54.3$ Hz, C₄*CHF*₂) ppm. ¹³C NMR (101 MHz, CDCl₃) 152.70 (t, ${}^{2}J_{C-F} = 27.1$ Hz, C₂), 147.80 (s, C₉), 139.93 (t, ${}^{2}J_{C-F} = 22.2$ Hz, C₄), 130.91 (s, C₇), 130.83 (s, C₈), 129.33 (s, C₆), 124.84 (s, C₁₀), 123.55 (s, C₅),

114.37 (t, ${}^{1}J_{C-F}$ = 242.0 Hz, C₄*CHF*₂), 114.32 – 114.17 (m, C₃), 113.13 (t, ${}^{1}J_{C-F}$ = 241.2 Hz, C₂*CHF*₂) ppm. C₁₁H₇F₄N (229): calcd (%) N 6.10, C 57.60, H 3.05, found N 6.20, C 57.56, H 2.96. MP: 48.2 – 49.7 °C.

Figure S36. NMR (¹H, ¹³C and ¹⁹F) and characterization data of compound 2d.

2,4-Bis(difluoromethyl)-6-fluoroquinoline 2d

¹H NMR (400 MHz, CDCl₃) δ_{H} = 8.24 (dd, ³J_{H-H} = 9.3, ⁴J_{H-F} = 5.5 Hz, 1H, C₈H), CHF₂ ${}^{2}J_{H-F}$ 7.92 (s, 1H, C₃H), 7.80 – 7.74 (m, 1H, C₅H), 7.65 – 7.60 (m, 1H, C₇H), 7.09 (t, = 54.2 Hz, 1H, C_4CHF_2), 6.79 (t, ${}^{2}J_{H-F}$ = 55.0 Hz, 1H, C_2CHF_2) ppm. ¹⁹F NMR CHE $(376 \text{ MHz}, \text{CDCl}_3) \delta_F = -107.18 - -107.24 \text{ (m, C}_6\text{F}\text{)}, -114.45 \text{ (d, }^2J_{F-H} = 55.0 \text{ Hz},$ 2d C₂CHF₂), -115.17 (d, ²J_{F-H} = 54.2 Hz, C₄CHF₂) ppm. ¹³C NMR (101 MHz, CDCl₃) Chemical Formula: C11H6F5N $\delta_{\rm C} =$ Exact Mass: 247,04 g/mol 162.01 (d, ${}^{1}J_{CF}$ = 252.9 Hz, C₆), 152.09 (td, ${}^{2}J_{CF}$ = 27.3, ${}^{6}J_{CF}$ = 3.1 Hz, C₂), Yellow solid 144.98 (s, C₉), 139.56 (td, ${}^{2}J_{C-F}$ = 22.4, ${}^{4}J_{C-F}$ = 6.1 Hz, C₄), 133.46 (d, ${}^{3}J_{C-F}$ = 9.6 Hz, C₈), 125.76 (d, ${}^{3}J_{C-F}$ = 10.4 Hz, C₁₀), 121.43 (d, ${}^{2}J_{C-F}$ = 25.8 Hz, C₇), 115.28 (t, ${}^{3}J_{C-F}$ = 7.8 Hz, C₃), 114.21 (t, ${}^{1}J_{C-F}$ = 241.3 Hz, C_2CHF_2), 110.78 (t, ${}^{1}J_{CF}$ = 242.0 Hz, C_4CHF_2), 107.84 (d, ${}^{2}J_{CF}$ = 24.0 Hz, C_5) ppm. $C_{11}H_6F_5N$ (247): calcd (%) N 5.66, C 53.41, H 2.43, found N 5.67, C 53.42, H 2.57. HRMS (ESI positive) for C₁₁H₇F₅N [M⁺]: calcd

248.0493, found 248.0497. MP: 68.7 – 71.2 °C.

Figure S37. NMR (¹H, ¹³C and ¹⁹F) and characterization data of compound 3c.

2,4-Bis(difluoromethyl)-6-(trifluoromethoxy)quinoline 3c

¹H NMR (400 MHz, CDCl₃) $\delta_{H} = 8.30$ (d, ³ $J_{H-H} = 9.3$ Hz, 1H, C₈H), 7.96 – 7.95 2H, C_{3,5}H), 7.73 (dd, ³ $J_{H-H} = 9.3$, ⁴ $J_{H-H} = 1.8$ Hz, 1H, C₇H), 7.13 (t, ² $J_{H-F} = 56.0$ 1H, C₄*CHF*₂), 6.80 (t, ² $J_{H-F} = 55.0$ Hz, 1H, C₂*CHF*₂) ppm. ¹⁹F NMR (376 MHz, CDCl₃) $\delta_{F} = -57.71$ (s, C₆*OCF*₃), -114.67 (d, ² $J_{F-H} = 55.0$ Hz, C₂*CHF*₂), -114.88 ² $J_{F-H} = 54.1$ Hz, C₄*CHF*₂) ppm. ¹³C NMR (101 MHz, CDCl₃) $\delta_{C} = 153.23$ (t, ² J_{C-F} 27.5 Hz, C₂), 148.97 (s, C₆), 146.01 (s, C₉), 140.06 (t, ² $J_{C-F} = 22.5$ Hz, C₄), 133.17 (s, C₈), 125.23 (s, C₁₀), 124.89 (s, C₇), 120.59 (q, ¹ $J_{C-F} = 259.2$ Hz,

 C_6OCF_3), 115.64 – 115.49 (m, C_3), 114.32 (s, C_5), 114.08 (t, ${}^{1}J_{C-F}$ = 241.6 Hz, C_2CHF_2), 113.09 (t, ${}^{1}J_{C-F}$ = 240.0 Hz, C_4CHF_2) ppm. $C_{12}H_6F_7NO$ (313): calcd (%) N 4.47, C 45.98, H 1.92, found N 4.49, C 46.35, H 2.07. MP: 47.5 – 48.2 °C.

Figure S38. NMR (¹H, ¹³C and ¹⁹F) and characterization data of compound 4d.

2,4-Bis(difluoromethyl)-6-methoxyquinoline 4d

¹H NMR (400 MHz, CDCl₃) $\delta_{H} = 8.15$ (d, ³ $J_{H-H} = 9.3$ Hz, 1H, C₈H), 7.90 (s, 1H, C₃H), 7.53 (dd, ³ $J_{H-H} = 9.3$, ⁴ $J_{H-H} = 2.5$ Hz, 1H, C₇H), 7.36 (s, 1H, C₅H), 7.16 (t, ² $J_{H-F} = 54.4$ Hz, 1H, C₄*CHF*₂), 6.85 (t, ² $J_{H-F} = 55.2$ Hz, 1H, C₂*CHF*₂), 4.03 (s, 3H, C₈*OCH*₃) ppm. ¹⁹F NMR (376 MHz, CDCl₃) $\delta_{F} = -113.99$ (d, ² $J_{F-H} = 55.3$ Hz, C₂*CHF*₂), -115.52 (d, ² $J_{F-H} = 54.4$ Hz, C₄*CHF*₂) ppm. ¹³C NMR (101 MHz, CDCl₃) $\delta_{C} = 159.77$ (s, C₆), 149.93 (t, ² $J_{C-F} = 27.0$ Hz, C₂), 143.966 (s, C₉), 138.02 (t, ² $J_{C-F} = 22.0$ Hz, C₄), 132.11 (s, C₈), 126.21 (s, C₁₀), 123.71 (s, C₇), 114.70 (tt, ³ $J_{C-F} = 8.0$, ³ $J_{C-F} = 1.8$ Hz, C₃), 114.51 (t, ¹ $J_{C-F} = 54.4$ Hz, C₄), 132.11 (t, 1)

Chemical Formula: C₁₂H₉F₄NO Exact Mass: 259,06 g/mol Orange solid

241.9 Hz, C₂*CHF*₂,), 113.57 (t, ¹*J*_{C-F} = 240.8 Hz, C₄*CHF*₂), 101.35 (s, C₅), 55.79 (s, C₈*OCH*₃) ppm. C₁₂H₉F₄NO (259): calcd (%) N 5.40, C 55.55, H 3.47, found N 5.43, C 55.24, H 3.30. MP: 93.5 – 97.2 °C.

Figure S39. NMR (¹H, ¹³C and ¹⁹F) and characterization data of compound 5b.

2,4-Bis(difluoromethyl)-N,N-dimethylquinolin-6-amine 5b

¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H} = 8.01$ (d, ³ $J_{H-H} = 9.4$ Hz, 1H, C₈H), 7.76 (s, 1H, C₃H), 7.42 (dd, ³ $J_{H-H} = 9.5$, ⁴ $J_{H-H} = 2.7$ Hz, 1H, C₇H), 7.07 (t, ² $J_{H-F} = 54.6$ Hz, 1H, C₄*CHF*₂), 6.90 (s, 1H, C₅H), 6.75 (t, ² $J_{H-F} = 55.5$ Hz, 1H, C₂*CHF*₂), 3.14 (s, 1H, C₆*N*(*CH*₃)₂) ppm. ¹⁹F NMR (376 MHz, CDCl₃) $\delta_{\rm F} = -113.38$ (d, ² $J_{F-H} = 55.5$ Hz, C₂*CHF*₂), -116.67 (d, ² $J_{F-H} = 54.6$ Hz, C₄*CHF*₂) ppm. ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C} = 149.96$ (s, C₆), 147.42 (t, ² $J_{C-F} = 26.8$ Hz, C₂), 141.73 (s, C₉), 136.29 (t, ² $J_{C-F} = 21.5$ Hz, C₄), 131.36 (s, C₈), 126.89 (s, C₁₀), 120.03 (s, C₇), 114.90 (t, ¹ $J_{C-F} = 239.9$ Hz, C₂*CHF*₂), 114.64 (t, ³ $J_{C-F} =$

Chemical Formula: C₁₃H₁₂F₄N₂ Exact Mass: 272,09 g/mol Orange solid

8.1 Hz, C₃), 113.69 (t, ¹*J*_{*C-F*} = 241.4 Hz, C₄*CHF*₂), 99.55 (s, C₅), 40.53 (s, C₆*N*(*CH*₃)₂) ppm. C₁₃H₁₂F₄N₂ (272): calcd (%) N 10.20, C 57.30, H 4.41, found N 10.09, C 56.86, H 4.40. MP: 115.6 – 116.9 °C.

Figure S40. NMR (¹H, ¹³C and ¹⁹F) and characterization data of compound **2e**.

2,4-Bis(difluoromethyl)-7-fluoroquinoline 2e

¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ = 8.17 (dd, ⁴J_{H-H} = 9.3, ³J_{H-F} = 5.7 Hz, 1H, C₈H), 7.86 CHF₂ (s, 1H, C₃H), 7.84 (s, 1H, C₅H), 7.57 – 7.49 (m, 1H, C₆H), 7.14 (t, ${}^{2}J_{H-F}$ = 54.2 Hz, 1H, C₄*CHF*₂), 6.78 (t, ²*J*_{*H*-*F*} = 55.0 Hz, 1H, C₂*CHF*₂) ppm. ¹⁹F NMR (376 MHz, CHE $CDCl_3$) $\delta_F = -106.41 - -106.96$ (m, C_7F), -114.43 (d, ${}^2J_{F-H} = 54.2$ Hz, C_2CHF_2), -114.83 (d, ${}^{2}J_{F-H}$ = 55.0 Hz, C₄*CHF*₂) ppm. 13 C NMR (101 MHz, CDCl₃) δ_{C} = 2e Chemical Formula: C11H6F5N 163.60 (d, ${}^{1}J_{CF}$ = 253.6 Hz, C₇), 153.93 (t, ${}^{2}J_{CF}$ = 27.3 Hz, C₂), 149.21 (d, ${}^{3}J_{CF}$ = 12.7 Exact Mass: 247,04 g/mol Hz, C₉), 140.17 (td, ${}^{2}J_{CF}$ = 22.4, ${}^{5}J_{CF}$ = 1.1 Hz, C₄), 126.00 (d, ${}^{3}J_{CF}$ = 9.8 Hz, C₅), Yellow solid

121.79 (d, ${}^{4}J_{C-F} = 1.0$ Hz, C₁₀), 119.91 (d, ${}^{2}J_{C-F} = 25.39$ Hz, C₆), 114.54 (d, ${}^{2}J_{C-F} = 20.56$ Hz, C₈), 114.12 (t, ${}^{1}J_{C-F} = 242.9$ Hz, C₂*CHF*₂), 113.86 (m, C₃), 113.23 (t, ${}^{1}J_{C-F} = 241.5$ Hz, C₄*CHF*₂) ppm. C₁₁H₆F₅N (247): calcd (%) N 5.66, C 53.41, H 2.43, found N 5.79, C 53.54, H 2.69. MP: 73.2 – 74.6 °C.

Figure S41. NMR (¹H, ¹³C and ¹⁹F) and characterization data of compound 3d.

(313): calcd (%) N 4.47, C 45.98, H 1.92, found N 4.49, C 46.13, H 2.15.

2,4-Bis(difluoromethyl)-7-(trifluoromethoxy)quinoline 3d

¹H NMR (400 MHz, CDCl₃) δ_{H} = 8.08 (d, ³J_{H-H} = 9.2 Hz, 1H, C₅H), 7.93 (s, 1H, C₈H), 7.79 (s, 1H, C₃H), 7.46 (d, ${}^{3}J_{H-H}$ = 9.2 Hz, 1H, C₆H), 7.03 (t, ${}^{2}J_{H-F}$ = 54.2 Hz, 1H, C_4CHF_2), 6.69 (t, ${}^2J_{H-F}$ = 55.0 Hz, 1H, C_2CHF_2) ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ_F = -F₃CO 58.14 (s, C_7OCF_3), -114.72 (d, ${}^2J_{F-H}$ = 54.1 Hz, C_2CHF_2), -115.17 (d, ${}^2J_{F-H}$ = 54.9 Hz, Chemical Formula: C12H6F7NO C_4CHF_2) ppm. ¹³C NMR (101 MHz, CDCl₃) δ_C = 154.12 (t, ²J_{C-F} = 27.3 Hz, C₂), 150.58 Exact Mass: 313,03 g/mol (s, C₇), 148.46 (s, C₉), 140.14 (t, ${}^{2}J_{C-F}$ = 22.5 Hz, C₄), 125.76 (s, C₅), 123.13 (s, C₆), Light brown liquid 122.95 (s, C₁₀), 120.58 (q, ¹J_{C-F} = 259.4 Hz, C₇OCF₃), 120.02 (s, C₈), 114.72 (tt, ³J_{C-F} = 8, ³J_{C-F} = 1.8 Hz, C₃), 114.04 (t, ¹J_{C-F} = 242.4 Hz, C₂CHF₂), 113.12 (t, ¹J_{C-F} = 241.4 Hz, C₄CHF₂) ppm. C₁₂H₆F₇NO

CHF₂

3d

CHF₂

Figure S42. NMR (¹H, ¹³C and ¹⁹F) and characterization data of compound 4e.

2,4-Bis(difluoromethyl)-7-methoxyquinoline 4e

¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ = 7.79 (d, ³J_{H-H} = 9.3 Hz, 1H, C₅H), 7.57 (s, 1H, CHF₂ C₃H), 7.30 (d, ${}^{4}J_{H-H}$ = 2.6 Hz, 1H, C₈H), 7.14 (dd, ${}^{3}J_{H-H}$ = 9.3, ${}^{4}J_{H-H}$ = 2.6 Hz, 1H, C_6H), 6.94 (t, ${}^{2}J_{H-F}$ = 54.4 Hz, 1H, C_4CHF_2), 6.62 (t, ${}^{2}J_{H-F}$ = 55.2 Hz, 1H, CHF₂ MeO (d, C_2CHF_2), 3.79 (s, 3H, C_8OCH_3) ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ_F = -114.79 **4**e ${}^{2}J_{F-H}$ = 54.4 Hz, C₂CHF₂), -114.95 (d, ${}^{2}J_{F-H}$ = 55.3 Hz, C₄CHF₂) ppm. ¹³C NMR Chemical Formula: C₁₂H₉F₄NO Exact Mass: 259,06 g/mol (101 MHz, CDCl₃) δ_{C} = 161.45 (s, C₇), 152.86 (t, ²J_{CF} = 26.7 Hz, C₂), 149.83 (s, Yellow solid C_9 , 139.56 (t, ${}^{2}J_{CF}$ = 22.2 Hz, C_4), 124.33 (s, C_5), 122.45 (s, C_6), 119.77 (t, ${}^{3}J_{CF}$ _F = 2.8 Hz, C₁₀), 114.25 (t, ¹*J*_{C-F} = 242.4 Hz, C₂CHF₂), 113.18 (t, ¹*J*_{C-F} = 241.0 Hz, C₄CHF₂), 111.89 - 111.70 (m, C₃),

108.24 (s, C_8), 55.60 (s, C_8OCH_3) ppm. $C_{12}H_9F_4NO$ (259): calcd (%) N 5.40, C 55.55, H 3.47, found N 5.55, C 55.57, H 3.67. MP: 55.4 – 56.9 °C.

Figure S43. NMR (¹H, ¹³C and ¹⁹F) and characterization data of compound 5c.

2,4-Bis(difluoromethyl)-N,N-dimethylquinolin-7-amine 5c

¹H NMR (400 MHz, CDCl₃) $\delta_{H} = 7.94$ (d, ³ $J_{H-H} = 9.4$ Hz, 1H, C₅H), 7.55 (s, 1H, C₈H), 7.29 (dd, ³ $J_{H-H} = 9.4$, ⁴ $J_{H-H} = 2.7$ Hz, 1H, C₆H), 7.21 (d, ⁴ $J_{H-F} = 2.7$ Hz, 1H, C₃H), 7.08 (t, ² $J_{H-F} = 54.6$ Hz, 1H, C₄*CHF*₂), 6.72 (t, ² $J_{H-F} = 55.4$ Hz, 1H, C₂*CHF*₂), 3.13 (s, 6H, C₇*N*(*CH*₃)₂) ppm. ¹⁹F NMR (376 MHz, CDCl₃) $\delta_{F} = -114.59$ (d, ² $J_{F-H} = 54.6$ Hz, C₂*CHF*₂), -114.89 (d, ² $J_{F-H} = 55.4$ Hz, C₄*CHF*₂) ppm. ¹³C NMR (101 MHz, CDCl₃) $\delta_{C} =$ 152.95 (t, ² $J_{C-F} = 26.5$ Hz, C₂), 151.69 (s, C₇), 150.03 (s, C₉), 139.30 (t, ² $J_{C-F} = 23.9$ Hz, C₄), 124.08 (s, C₅), 118.49 (s, C₈), 116.98 (s, C₁₀), 114.56 (t, ¹ $J_{C-F} = 264.0$ Hz, C₂*CHF*₂), 113.54 (t, ¹ $J_{C-F} = 240.8$ Hz, C₄*CHF*₂), 109.73 (tt, ³ $J_{C-F} = 8.0$, ³ $J_{C-F} = 2.2$ Hz, C₃), 10

Chemical Formula: C₁₃H₁₂F₄N₂ Exact Mass: 272,09 g/mol Brown solid

 C_2CHF_2), 113.54 (t, ${}^{1}J_{C-F}$ = 240.8 Hz, C_4CHF_2), 109.73 (tt, ${}^{3}J_{C-F}$ = 8.0, ${}^{3}J_{C-F}$ = 2.2 Hz, C_3), 107.26 (s, C_6), 40.38 (s, $C_7N(CH_3)_2$) ppm. $C_{13}H_{12}F_4N_2$ (272): calcd (%) N 10.20, C 57.30, H 4.41, found N 10.06, C 57.26, H 4.41. MP: 83.7 – 84.7 °C.

