Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information for

Synthesis and Characterization of Neutral and Cationic Aluminum

Complexes Supported by Furfuryl-Containing Aminophenolate

Ligand for Ring-Opening Polymerization of ε-Caprolactone

Jiraya Kiriratnikom^a, Sucheewin Chotchatchawankul^b, Setsiri Haesuwannakij^b,

Supavadee Kiatisevi^a and Khamphee Phomphrai^{*,b}

^aDepartment of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand.

^bDepartment of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand.

Tel: +(66) 33-014-444; *E-mail: khamphee.p@vistec.ac.th

New Journal of Chemistry 2018

Fig. S1 X-ray crystal structure of LAlMe₂ (1) with thermal ellipsoids drawn at 50% probability level. Hydrogen atoms are omitted for clarity.

Fig. S2 X-ray crystal structure of LAlMeCl (2) with thermal ellipsoids drawn at 50% probability level. Hydrogen atoms are omitted for clarity.

1		2		
O1-Al1-C26	108.3(1)	O1-Al1-C26a	116.2(1)	
01-Al1-N1	96.16(4)	O1-Al1-N1a	98.29(7)	
C26-Al1-N1	108.2(1)	C26a-Al1-N1a	112.6(1)	
O1-Al1-C27	112.2(1)	O1-Al1-Cl1a	107.4(1)	
C27-Al1-C26	120.8(1)	C26a-Al1-Cl1	115.4(1)	
C27-Al1-N1	108.4(1)	N1a-Al1-Cl1a	105.3(1)	
O4-Al2-C53	112.6(1)	O4-Al2-C52a	110.6(1)	
O4-Al2-C54	107.7(1)	O4-Al2-N1b	98.01(7)	
C53-Al2-C54	121.0(1)	C52a-Al2-N1b	109.3(1)	
O4-Al2- N2	96.47(4)	O4-Al2-Cl2a	107.5(1)	
C53-Al2-N2	107.9(1)	C52a-Al2-Cl2a	123.5(1)	
C54-Al2-N2	108.3(1)	N1b-Al2-Cl2a	104.9(1)	
Al1-01	1.764(1)	Al1-O1	1.730(2)	
Al1-C27	1.966(1)	Al1-Cl1a	2.139(1)	
Al1-C26	1.973(1)	Al1-C26a	1.961(4)	
Al1-N1	2.045(1)	Al1-N1a	2.004(2)	
Al2-O4	1.761(1)	Al2-Cl2a	2.138(1)	
Al2-C53	1.967(2)	Al2-O4	1.735(2)	
Al2-C54	1.973(2)	Al2-C52a	2.021(4)	
A12-N2	2.041(1)	Al2-N1b	2.009(2)	

Table S1 Selected bond angles (deg) and bond length (Å) for complexes 1 and 2

Fig. S3 A 2D COSY NMR of LAIMe₂ (1) in C₆D₆ at 30 °C.

Fig. S4 A 2D COSY NMR of LAIMeCl (2) in CDCl₃ at 30 °C.

Fig. S5 A 2D COSY NMR of LAIMeO'Bu (3) in C₆D₆ at 30 °C.

Fig. S6 A diffusion-ordered spectroscopy (DOSY) NMR of $[LAlMe][MeB(C_6F_5)_3]$ (4) in CD₂Cl₂ at 30 °C using benzene and $[MeB(C_6F_5)_3]$ as internal standard.

Table S2 Diffusion coefficient (D), estimated molecular mass (m) and molecular weight of monomeric (FW) and dimeric species (FW2)

Complex	$D (\times 10^{-9} \text{ m}^2 \text{ s}^{-1})$	$D_{benzene} (\times 10^{-9} m^2 s^{-1})$	m ^a	FW	FW2
_			(Da)	(Da)	(Da)
[LAlMe] ⁺	1.269	2.886	578	436	872

^a Estimated molecular mass using benzene as internal reference species

Fig. S7 ESI mass spectra of PCL synthesized from ε -CL: **5**: BnOH = 10:1:1 at room temperature where $\circ = [CL]_n + H^+$ and $\blacktriangle = BnO[CL]_nH + H^+$.

Fig. S8 Plot of $\ln([CL]/[CL]_0)$ vs time for the polymerization of 100 equiv of ϵ -CL using complex 5/benzyl alcohol at room temperature.