Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

New Journal of Chemistry

Supporting Information

Comb-Shaped Polyzwitterion with Surface-Activity via Nmaleoyl Chitosan Modified HPAM for Displacement of Residual Oil

Shiwei Li^a, Shaohua Gou*^{ab}, Xin Chen^a and Ming Duan*^{ab}

^aOil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University,

Chengdu 610500, People's Republic of China.

^b State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University,

Chengdu 610500, People's Republic of China.

1. Optimum Conditions

Fig. S1 The optimum mass of monomers.

AM (g)	AA (g)	N-MCS (g)	MMPES (g)	t-BA (g)	$\eta (mPa \cdot s)^b$
9	1	0.3	0.1	0.2	594
8	2	0.3	0.1	0.2	651
7	3	0.3	0.1	0.2	907
5	5	0.3	0.1	0.2	924
6	4	0.3	0.1	0.2	1080
6	4	0.5	0.1	0.2	706
6	4	0.4	0.1	0.2	949
6	4	0.2	0.1	0.2	893
6	4	0.1	0.1	0.2	701
6	4	0.3	0.05	0.2	922
6	4	0.3	0.15	0.2	886
6	4	0.3	0.2	0.2	716
6	4	0.3	0.25	0.2	625
6	4	0.3	0.1	0.05	537
6	4	0.3	0.1	0.1	706
6	4	0.3	0.1	0.15	939
6	4	0.3	0.1	0.25	816
6	4	0.3	0.1	0.3	683

Table S1. The effects of the ratio of AM, AA, MMPES, t-BA and N-MCS on PNMASt.

^aConditions: initiator loading= 0.03g, pH= 7, Temperature= 40 °C.

^bApparent viscosity: copolymer solution=2000 mg/L, HAAKE MARS III rheometer (HAAKE, Germany) at 30 °C.

Fig. S2 Optimum amount of initiator, pH value and temperature.

Initiator (g)	pН	Temperature (°C)	η (mPa·s) ^b
0.01	7	40	851
0.02	7	40	946
0.03	7	40	1080
0.04	7	40	697
0.05	7	40	508
0.03	5	40	386
0.03	6	40	757
0.03	8	40	970
0.03	9	40	770
0.03	11	40	c
0.03	7	30	874
0.03	7	35	957
0.03	7	45	791
0.03	7	50	603

Table S2. The effects of the initiator concentration, pH and temperature on PNMASt.

^aConditions: AA/AM/N-MCS/MMPES/t-BA = 6/4/0.3/0.1/0.2 (g).

^bApparent viscosity: copolymer solution=2000 mg/L, HAAKE MARS III rheometer (HAAKE, Germany) at 30 °C.. ^csituation: obvious copolymerization was not observed.

According to above, the optimum conditions is that, N-MCS: 0.3g, AM/AA: 6g/4g, MMPES: 0.1g, t-BA: 0.2g, initiator: 0.03g; pH=7; T=40 °C.

2. Measurement of the intrinsic viscosity for copolymer

Fig. S3. The nsp/c and lnnr/c relationship with the concentration of PNMASt.

As shown in Fig. S3, it was clear that the values of two fitting curve (η_{sp}/c and $\ln\eta_r/c$) fitted to the ordinate was 1611.03, 1558.64 mL/g, respectively, and so, the intrinsic viscosity of PNMASt was about 1590 mL/g.

3. Measurement of monomer conversion for PNMASt

High-performance liquid chromatography (HPLC; Shimadzu Co., Japan) as an reliable method to get monomer conversion of PNMASt. H₂O (UP):CH₃OH (99%) as the mobile phase (1.0 mL/min) flowed through a C₁₈ chromatographic column (40 °C) and a UV detector (wavelength: 210 nm). Following eq calculated the conversion of monomers from PNMASt with the content of unconverted monomers from ethanol that which was to purify PNMASt:

$$D(\%) = \frac{W - \frac{SC_0}{S_0} \times V}{W} \times 100\%$$
(1)

Where *D* is conversion of monomer, *W* is total mass of monomer, *S* is the peak value of measured monomer in ethanol, C_0 and S_0 are concentration and peak of corresponding standard sample of measured monomer, *V* is the volume of ethanol for purified PNMASt.

The function of monomers' peak area (AA, AM, MMPES and t-BA) and concentration was shown as following:

S_{AM}=1641090+4.44112×10⁷×C, S_{AA}=919876.33002+1.37002×10⁷×C,

St-BA=239896.60023+3.10056×10⁶×C, S_{MMPES}=501272.23518+3.96531×10⁶×C,

On the basis of the results, the conversion for AM, AA, MMPES and t-BA are 99.24%, 93.78%, 79.49% and 82.03% separately. The purified copolymer is 10.1904 g.

Fig. S4 The experimental apparatus of core displacement experiment.

Coro No	Permeability	$\mathbf{D}\mathbf{V}(\mathbf{m}^{1})$	Demosity (0/)	Oil saturation	
Core No.	(D) ^a	PV (IIII)	Porosity (%)	(%)	
1#	1.79	45.8	37.58	89.24%	
2#	1.85	44.9	36.69	89.15%	

Table S3 Basic Information for Artificial Core

^a Determined by Darcy's Law.

Table S4 Parameters of simulated formation water from shengli oilfield

Inorganic ions	K+, Na+	Ca ²⁺	Mg ²⁺	CO ₃ ²⁻	HCO ₃ -	SO_4^{2-}	Cl-	Total	рН
Concentration(mg/L)	3091.96	276.17	158.68	14.21	311.48	85.29	5436.34	9374.13	7.12

Polymer	P ₀	P ₁	P ₂	Rf	DC		E ₁	E ₂	EOR
Item	(MPa)	(MPa)	(MPa)		KRI	(%)	(%)	(%)	
HPAM	0.011	0.093	0.021	8.45	1.91	57.32	50.11	7.21	
PNMASt	0.013	0.24	0.086	18.23	6.62	66.94	53.62	13.32	

Table S5 Experimental results of EOR and mobility control ability

Fig. S5. Schematic diagram for synthesis, (a): N-MCS; (b): MMPES