Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information for

the manuscript "Complex Salts of $\mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})$ with $\mathrm{Co}(\mathrm{II})$ And $\mathrm{Ni}(\mathrm{II})$ Aquocations as Single-Source Precursors for Bimetallic Nanoalloys" by Andrey Zadesenets, Evgeniy Filatov, Pavel Plyusnin, Tatyana Asanova, Iraida Baidina, Elena Slyakhova, Igor Asanov and Sergey Korenev

Figure 1s. IR-spectra of DCSs and related nitrocomplex salts of Pd.
$\mathbf{B a}\left[\mathbf{P t}\left(\mathbf{N O}_{\mathbf{2}}\right)_{4}\right] \cdot \mathbf{3} \mathbf{H}_{\mathbf{2}} \mathbf{O}\left(\mathbf{v}, \mathbf{c m}^{-1}\right): 3469 v\left(\mathrm{H}_{2} \mathrm{O}\right) ; 1628 \delta\left(\mathrm{H}_{2} \mathrm{O}\right) ; 1413,1336 v\left(\mathrm{NO}_{2}{ }^{-}\right) ; 846 \delta(\mathrm{ONO}) ;$ $\left[\mathbf{C o}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left[\mathbf{P t}\left(\mathbf{N O}_{2}\right)_{4}\right] \cdot \mathbf{2 H} \mathbf{H}_{2} \mathrm{O}: 3412 \mathrm{v}\left(\mathrm{H}_{2} \mathrm{O}\right) ; 1624 \delta\left(\mathrm{H}_{2} \mathrm{O}\right) ; 1440,1415,1388 \mathrm{v}_{\mathrm{a}}\left(\mathrm{NO}_{2}{ }^{-}\right) ; 1348$ $\mathrm{v}_{\mathrm{s}}\left(\mathrm{NO}_{2}^{-}{ }^{-}\right), 840,833 \delta(\mathrm{ONO}) ; 636,613 \rho_{\mathrm{w}}\left(\mathrm{NO}_{2}^{-}\right)$;
$\left[\mathbf{N i}\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)_{6}\right]\left[\mathbf{P t}\left(\mathbf{N O}_{2}\right)_{4}\right] \cdot \mathbf{2 H} \mathbf{H}_{\mathbf{2}} \mathbf{O}: 3367 \mathrm{v}\left(\mathrm{H}_{2} \mathrm{O}\right) ; 1628 \delta\left(\mathrm{H}_{2} \mathrm{O}\right) ; 1440,1415,1388 \mathrm{v}_{\mathrm{a}}\left(\mathrm{NO}_{2}{ }^{-}\right), 1350$ $v_{\mathrm{s}}\left(\mathrm{NO}_{2}^{-}\right), 833 \delta(\mathrm{ONO}) ; 638,613 \rho_{\mathrm{w}}\left(\mathrm{NO}_{2}{ }^{-}\right)$;
$\left[\mathbf{C o}\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)_{6}\right]\left[\mathbf{P d}\left(\mathbf{N O}_{2}\right)_{4}\right] \cdot \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}: 3389 v\left(\mathrm{H}_{2} \mathrm{O}\right) ; 1647 \delta\left(\mathrm{H}_{2} \mathrm{O}\right) ; 1440,1406,1389 \mathrm{v}_{\mathrm{a}}\left(\mathrm{NO}_{2}{ }^{-}\right), 1342$ $\mathrm{v}_{\mathrm{s}}\left(\mathrm{NO}_{2}^{-}\right), 837 \delta(\mathrm{ONO}) ; 608 \rho_{\mathrm{w}}\left(\mathrm{NO}_{2}^{-}\right)$;
$\left[\mathbf{N i}\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)_{6}\right]\left[\mathbf{P d}\left(\mathbf{N O}_{\mathbf{2}}\right)_{4}\right] \cdot \mathbf{2 H} \mathbf{2} \mathbf{O}: 3410 v\left(\mathrm{H}_{2} \mathrm{O}\right) ; 1630 \delta\left(\mathrm{H}_{2} \mathrm{O}\right) ; 1436,1406,1387 \mathrm{v}_{\mathrm{a}}\left(\mathrm{NO}_{2}{ }^{-}\right), 1344$

$$
v_{\mathrm{s}}\left(\mathrm{NO}_{2}^{-}\right), 829,837 \delta(\mathrm{ONO}) ; 608 \rho_{\mathrm{w}}\left(\mathrm{NO}_{2}^{-}\right) ;
$$

Table 1s. Crystallografic data of [M'-M"].

Compound	[Ba-Pt]	[Co-Pd]	[$\mathrm{Ni}-\mathrm{Pd}$]	[Co-Pt]	[Ni -Pt]
Crystal system	triclinic				
Sppace group	P-1				
$a, ~ \AA \AA$	8.3841(7)	6.0051(3)	5.9834(2)	5,9125(4)	5.9377(4)
b, Å	8.4220(7)	7.8865(4)	7.8788(3)	7.8201(5)	7.7854(5)
c, Å	9.5643(8)	8.6872(5)	8.6406(3)	8,7149(6)	8.7147(5)
α, ${ }^{\circ}$	81.036(2)	110.055(3)	110.211(2)	110,076(3)	110.031(3)
β, ${ }^{\circ}$	71.001(2)	105.100(3)	105.344(2)	103,908(3)	104.303(3)
$\gamma,{ }^{\circ}$	60.479(2)	96.203(3)	95.988(2)	96,272(3)	96.242(3)
V, \AA^{3}	555.65(8)	364.18(3)	359.90(2)	359.15(4)	358.39(4)
Z	2				
$\rho_{\text {calc }}, \mathrm{g} \cdot \mathrm{cm}^{-3}$	3.410	2.250	2.276	2.691	2.696
Absorption coefficient	16.158	2.465	2.650	10.973	11.155
F (000)	512	245	246	276	278
T, K	296(2)	296(2)	296(2)	296(2)	296(2)
Reflections collected	7763	9020	6655	4018	6420
Independent reflections	2364	5211	4146	2656	3476
$R($ int $)$	0.0278	0.0367	0.0323	0.0234	0.0267
2θ, ${ }^{\circ}$	2.25-31.18	3.60-33.17	2.65-33.19	2.61-30.49	2.61-32.13
Parameters/restraints	182/9	248/19	261/11	210/24	248/19
Goodness-of-fit on F^{2}	1.073	1.008	1.101	0.6117	1.038
R1, wR2 (all data)	0.0157, 0.0380	$\begin{gathered} 0.0247, \\ 0.0493 \end{gathered}$	$\begin{aligned} & 0.0229, \\ & 0.0506 \end{aligned}$	0.0234,	0.0148,
	0.0152 ,	0.0211,	0.0212,	0.0234,	0.0148 ,
R1, wR2 ($1>2 \sigma$)	0.0378	0.0479	0.0497	0.6117	0.0346
№ ICSD	1590231	1590234	1590233	1590230	1590228

Table 2s. Selected distances and angles for DCSs.

Compound	[Ba-Pt]	[Co-Pd]	[Ni -Pd]	[Co-Pt]	[Ni -Pt]
Distances					
M'-OW1 ${ }^{\text {* }}$ [Ba-Pt]: Ba ...Oılw	2.770(2)	2.144(5)	2.070(6)	2.11(2)	2.074(8)
M'-OW2 *[Ba-Pt]: $\mathrm{Ba} . . . \mathrm{O} 2 \mathrm{~W}$	2.742(3)	$2.106(5)$	2.099(5)	2.05(2)	2.079(7)
M'-OW3 ${ }^{\text {[}}$ [Ba-Pt]: Ba ...O3W	2.741(3)	2.073(5)	2.056 (5)	2.13(2)	2.024(8)
M'-OW4		2.055(6)	2.052(5)	2.14(2)	2.032(8)
M'-OW5		2.080(5)	2.041(6)	2.04(2)	2.077(9)
M'-OW6		$2.095(5)$	2.021(6)	2.09(2)	2.017(9)
M"-N1	2.020(3)	2.043(5)	2.023(4)	2.052(2)	2.011(7)
M"-N2	2.012(2)	2.022(4)	1.999(5)	2.058(2)	2.020(9)
M ${ }^{\text {- }}$-N3 $\left.{ }^{\text {* }} \mathrm{Ba-Pt]}\right]$ Pl2-N3	2.005(3)	2.022(6)	2.047(4)	1.977(2)	2.035(6)
	2.024(3)	2.026 (5)	$2.038(5)$	1.975(2)	1.987(9)
N1-O1		1.201(7)	1.220(7)	1.21(3)	1.247(9)
N1-O2		1.217(7)	1.243(7)	1.29(2)	1.213(9)
N2-O3		1.206(7)	1.238(7)	1.20(2)	1.238(9)
N2-O4		1.261(7)	1.248(7)	1.24(3)	1.214(9)
N3-O5		1.242(7)	1.232(6)	1.24(2)	1.247(9)
N3-O6		1.265(8)	1.237(6)	1.29(3)	1.191(9)
N4-O7		1.215(8)	1.221(6)	1.30(2)	1.257(9)
N4-O8		1.263(7)	1.220(7)	1.25(3)	1.247(9)
Angles					
OW1-M'-OW2 *[Ba-Pt]: O1w-Ba-O2w	131.5(1)	177.6(3)	178.1(3)	176.9(8)	179.3(5)
OW1-M'-OW3 *[Ba-Pt]: O1w-Ba-O2W	75.08(11)	91.7(2)	88.6(2)	86.6(8)	90.6(3)
OW1-M'-OW4 *[Ba-Pt]: O1w-Ba-O2W	126.26(8)	88.5(2)	91.1(2)	91.4(7)	89.2(3)
OW1-M'-OW5		92.8(2)	89.7(2)	91.1(8)	90.8(3)
OW1-M'-OW6		88.3(2)	92.4(2)	93.0(8)	89.0(4)
OW2-M'-OW3		88.0(2)	90.3(2)	90.4(8)	89.6(3)
OW2-M'-OW4		91.8(2)	90.0(2)	91.5(7)	90.6(3)
OW2-M'-OW5		89.6(2)	91.8(2)	88.2(8)	88.5(3)
OW2-M'-OW6		89.3(2)	86.1(2)	87.9(8)	91.7(4)
OW3-M'-OW4		179.5(4)	179.7(3)	178.0(8)	179.7(6)
OW3-M'-OW5		91.0(2)	92.1(2)	95.6(9)	93.1(4)
OW3-M'-OW6		87.8(2)	89.5(2)	88.6(9)	87.2(4)
$\mathrm{N} 1-\mathrm{M} "-\mathrm{N} 2{ }^{\text {* }}$ [Ba-Pt] ${ }^{\text {N } 1-\mathrm{Pt} 1-\mathrm{N} 2}$	86.3(1)	87.3(2)	87.1(2)	86.2(3)	86.7(5)
N1-M"-N3 *[Ba-Pt $]$: $11-\mathrm{Pt1}-\mathrm{N} 1^{\prime}$	180.00	178.6(3)	179.5(3)	178.1(4)	175.9(8)
N1-M"-N4 *[Ba-Pt] : 2 2-Pt1-N1 ${ }^{\prime}$	93.7(1)	93.0(2)	92.9(2)	93.6(3)	91.2(6)
$\mathrm{N} 2-\mathrm{M}{ }^{\prime \prime}-\mathrm{N} 3$ *[Ba-Pt]: $\mathrm{N} 3-\mathrm{P} 22-\mathrm{N} 4$	89.4(1)	92.5(2)	93.0(2)	92.3(3)	95.0(6)
N2-M"-N4 *[Ba-Pt]: $\mathrm{N} 3-\mathrm{Pl} 2-\mathrm{N} 3{ }^{\prime}$	180.00	178.6(3)	179.5(3)	179.7(4)	176.4(8)
N3-M"-N4 $\left.{ }^{(B a-P t}\right]$: 4 -Pt2-N3 ${ }^{\prime}$	90.6(1)	87.2(2)	87.0(2)	87.8(3)	87.3(7)
O1-N1-O2	118.4(3)	121.1(5)	118.6(4)	118.5(8)	122.7(18)
O3-N2-O4	118.9(2)	119.0(5)	118.2(5)	120.9(10)	124.8(17)
O5-N3-O6	119.1(3)	116.3(6)	119.2(4)	120.1(7)	113.6(17)
O7-N4-O8	118.0(3)	120.6(5)	120.6(5)	117.3(10)	112.8(16)

Table 3s. Rotation angles of NO_{2}-groups relative to $\left[\mathrm{M}^{\prime \prime} \mathbf{N}_{4}\right]$-plane in $\left[\mathrm{M}^{\prime \prime}\left(\mathrm{NO}_{2}\right)_{4}\right]^{\mathbf{2 -}}$ anions (clockwise).

Axis	$[\mathrm{Co}-\mathrm{Pd}]$	$[\mathrm{Ni}-\mathrm{Pd}]$	$[\mathrm{Co}-\mathrm{Pt}]$	$[\mathrm{Ni}-\mathrm{Pt}]$
$\mathrm{N} 1-\mathrm{M}^{\prime \prime}$	$66.0(3)$	$66.7(3)$	$57.4(8)$	$62.7(5)$
$\mathrm{N} 2-\mathrm{M}^{\prime \prime}$	$54.2(3)$	$55.7(3)$	$53.1(9)$	$54.0(5)$
$\mathrm{N} 3-\mathrm{M}^{\prime \prime}$	$-63.0(3)$	$-63.6(3)$	$-66.0(9)$	$-61.5(5)$
$\mathrm{N} 4-\mathrm{M}^{\prime \prime}$	$-55.8(3)$	$-54.1(3)$	$-54.7(9)$	$-53.7(5)$

Figure 2s. XRD patterns of decomposition products in He.

Figure 3s. XRD patterns of final decomposition products in $\mathbf{H e}, \mathrm{O}_{\mathbf{2}}$ and $\mathbf{H}_{\mathbf{2}}$.
3.2.3. XPS of [Co-Pt] and oxide semi-products. Before discussing the XPS results some elucidations about CoO and $\mathrm{Co}_{3} \mathrm{O}_{4}$ must be done. The surface of CoO is always oxidized to $\mathrm{Co}_{3} \mathrm{O}_{4}{ }^{1}$ Moreover, the Co binding energies in various oxides and hydroxides overlap, it is also possible an overlap of oxide satellites with metallic Co $2 \mathrm{p}_{1 / 2}$. The easiest to distinguish CoO from $\mathrm{Co}_{3} \mathrm{O}_{4}$ is by profile of spectrum, namely intensity of satellite. The CoO intensity is much greater than that of $\mathrm{Co}_{3} \mathrm{O}_{4}$.

The Co $2 \mathrm{p}_{3 / 2,1 / 2}$ spectrum of initial DCS (Figure 4) can be described by two doublets with a splitting of 15.2 eV . The first two peaks of Co $2 \mathrm{p}_{3 / 2}$ are at 782.2 and 786.6 eV , the first one is regarded to $\mathrm{Co}(\mathrm{II})$, the second one is charge transfer satellite. The spectrum of $\mathrm{Pt} 4 \mathrm{f}_{7 / 2,5 / 2}$ is a doublet with a splitting of 3.3 eV . In DCS the position of $\mathrm{Pt} 4 \mathrm{f}_{7 / 2}$ is at 74 eV and the position of N 1 s is 404.9 , that corresponds to $\mathrm{Pt}(\mathrm{II})-\mathrm{N}$ binding energy in $\left[\mathrm{Pt}\left(\mathrm{NO}_{2}\right)_{4}\right]^{2-}$ complex. The O 1 s spectrum consists of two peaks. One of them (533.4 eV) is regarded to oxygen which is bonded to Co ; the second one $(532.4 \mathrm{eV})$ - to $\mathrm{NO}_{2}{ }^{-}$.

The spectrum of a sample, which was obtained by heating of DCS up to $400^{\circ} \mathrm{C}$, is characteristic for CoO^{2} The spectrum of O 1 s consists of two lines at 530.4 and 531.6 eV . The first one is typical for metal oxides, the second can be referred to $\mathrm{C}-\mathrm{O}$ groups (surface $\mathrm{CO}_{3}{ }^{2-}$). ${ }^{3}$ The spectrum of Pt contains three doublets with $\mathrm{Pt} 4 \mathrm{f}_{7 / 2}$ at $72.9,74.2$ and 75.1 eV . Binding energies of 74.2 and 75.1 eV correspond to $\mathrm{Pt}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{IV})$ and can be ascribed to $\mathrm{PtO}-$ and PtO_{2}-like phases. ${ }^{4}$ The peak at 72.9 eV is in between $\mathrm{Pt}(0)$ and $\mathrm{Pt}(\mathrm{II})$. The similar line was observed by other authors ${ }^{5,6}$ and can be explained by a partial reduction of $\operatorname{Pt}(\mathrm{IV})$ to $\mathrm{Pt}(\mathrm{I})$ and decrease of coordination number, since gradually arising PtCoO_{2} phase comprises of $\mathrm{Pt}(\mathrm{I})$ and $\mathrm{Co}(\mathrm{III})$.

The Co spectrum of $550^{\circ} \mathrm{C}$ sample is being well described with a combination of lines referred to $\mathrm{Co}_{3} \mathrm{O}_{4}$. The formation of this oxide has to do primarily with the surface, and not with the volume due to above-mentioned reasons. Two doublets appear in the Pt spectrum with $\operatorname{Pt} 4 \mathrm{f}_{7 / 2} 72.2$ and 74.0 eV . The line 74.0 eV is referred to $\mathrm{Pt}(\mathrm{II})$; the line 72.2 eV supposed to be analogous to that in $400^{\circ} \mathrm{C}$ sample. As can be seen from 400° and $550^{\circ} \mathrm{C}$ spectra, the peak of $\mathrm{Pt} 4 \mathrm{f}_{7 / 2}$ shifts a 0.6 eV to lower energy area with increase of temperature, and its intensity grows approximately twice. The shift of binding energies to lower values is due to $\mathrm{Pt}(\mathrm{I})$ fraction becomes the main in bulk mass. The O 1 s spectrum comprises three components at $529.8,531.2$ and 532.9 eV , which can be attributed to O-Pt, O in $\mathrm{CO}_{3}{ }^{2-}$ and OH^{-}respectively.

The Co spectrum of $700^{\circ} \mathrm{C}$ is similar to that of $550^{\circ} \mathrm{C}$ sample. The $\mathrm{Pt} 4 \mathrm{f}_{7 / 2}$ line (ascribed to $\mathrm{Pt}(\mathrm{I})$) increases and continues to shift to $\mathrm{Pt}(0)$, the energy is 71.8 eV . The second component at 74.1 (ascribed to PtO -like phase) decreases. The spectra of O 1 s changes insignificantly.

The Co spectrum of final product is intermediate between CoO and $\mathrm{Co}_{3} \mathrm{O}_{4}$. Since the CoO was confirmed by XRD, it could be partially oxidized at surface. The Pt spectrum is analogous to $\mathrm{Pt}(0)$. The O spectrum remains to comprise of three components: oxide, carbonate and hydroxide.

[^0]
[^0]: ${ }^{1}$ S.C. Petitto, E.M. Marsh, G.A. Carson, M.A. Langell, J. Mol. Catal. A-Chem. 2008, 281, 49-58.
 ${ }^{2}$ M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 2011, 257, 2717-2730.
 ${ }^{3}$ J. Stoch, J. Gablankowska-Kukucz, Surf. Interface Anal. 1991, 17, 165-167.
 ${ }^{4}$ S.D. Jackson, J. Willis, G.D. McLellan, G. Webb, M.B.T. Keegan, R.B. Moyes, S. Simpson, P.B. Wells, R. Whyman, J. Catal. 1993, 139, 191-206.
 ${ }^{5}$ H. Ye, R.W.J. Scott, R.M. Crooks, Langmuir 2004, 20, 2915-2920.
 ${ }^{6}$ Ph. Arrizabalaga, P. Castan, J.-P. Laurent, A. Salesse, Chem. Phys. Lett. 1980, 76, 548-552.

