Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Emergence of bismuth substituted cobalt ferrite nanostructures as versatile candidates for the enhanced oxidative degradation of hazardous organic dyes.

Surbhi Kapoor^a, Ankita Goyal^b, Sandeep Bansal^c and Sonal Singhal^{a*}

^aDepartment of Chemistry, Panjab University, Chandigarh, 160014, India.

^bDepartment of Nuclear Medicine, PGIMER, Chandigarh, 160012, India

^cDepartment of Science and Technology, New Delhi

*sonal1174@gmail.com; sonal@pu.ac.in

Supplementary information

Fig S1 FT-IR spectra of $CoBi_xFe_{2-x}O_4$ (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1).

Fig S2 (a,b) Typical low resolution TEM micrographs (c) high resolution TEM micrograph (d) SAED pattern and (e) EDX spectrum of $CoBi_{0.1}Fe_{1.9}O_4$.

Fig S3 Hysteresis loops of $CoBi_xFe_{2-x}O_4$ (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1).

Fig S4 Structures of (a) Remazol Black 5 (RB5) and (b) Safranin O (SO) dyes.

Fig S5 % Degradation *vs.* time curves for the degradation of (a) RB5 dye by Fenton process (b) RB5 dye by photo-Fenton process (c) SO dye by Fenton process (d) SO dye by photo-Fenton process in the presence of $\text{CoBi}_x\text{Fe}_{2-x}\text{O}_4$ (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1).

Fig S6 The completion time values for various catalytic cycles for the degradation of RB5 dye in the presence of (a) $CoBi_{0.02}Fe_{1.98}O_4$ and (b) $CoBi_{0.04}Fe_{1.96}O_4$ by photo-Fenton process.

CoBi _x Fe _{2-x} O ₄ (x)	(cm^{-1})	Crystallite size (nm)	Lattice parameter (Å)
0	544	17.4	8.375
0.02	540	15.3	8.378
0.04	533	16.2	8.387
0.06	537	16.9	8.383
0.08	536	17.5	8.374
0.1	545	17.6	8.378

Table S1 The values of v_1 , crystallite size and lattice parameter of $CoBi_xFe_{2-x}O_4$ (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) nanostructures.

	Fixed variable	Conditions	Rate constant (min ⁻¹) (kx10 ⁻²)
Variation of pH	$[CoFe_2O_4] = 0.50 \text{ g/L},$	2	8.91
	$[H_2O_2] = 8.8 \text{ mM}$	2.5	9.23
		3	5.95
Variation of H ₂ O ₂ (mM)	$[CoFe_2O_4] = 0.50 \text{ g/L}$	4.4	8.86
	pH = 2.5	8.8	9.23
		13.2	8.70
Variation of CoFe ₂ O ₄ (g/L)	pH = 2.5	0.25	8.87
	$[H_2O_2] = 8.8 \text{ mM}$	0.50	9.23
		0.75	8.67
		1.00	8.46

 $\label{eq:table_state} \textbf{Table S2} \ Optimization \ of \ reaction \ conditions \ (pH, \ H_2O_2 \ dosage, \ CoFe_2O_4 \ loading).$