Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supplementary Information for

Dimeric palladium 1,2,3-triazol-5-ylidene complexes – synthesis, structure, reactivity and catalytic properties in Suzuki coupling

Jan Lorkowski, Patrycja Żak, Maciej Kubicki, Cezary Pietraszuk,* Dawid Jędrzkiewicz, Jolanta Ejfler*

Submitted to New Journal of Chemistry

Table of Content

1. Synthesis and characterization of triazoles	S 2
2. Synthesis and characterization of triazolium iodides	S 3
3. X-ray crystallography	S 4
4. NMR spectroscopic study of 3a-c in solution	S 9
5. Calculations of diffusion coefficients	S14
6. Computational details	S15
7. The study of transformation of 3a in solution	S18
8. Optimization of the conditions of Suzuki-Miyaura coupling	S19
9. Mass spectrometric study of the decomposition of 3a and 3b	S19
10. ¹ H NMR spectroscopic investigation of the reaction of 3a with tolylboronic acid	S20
11. Synthesis and characterization of 8	S22
12. Mercury poisoning experiments	S24
13. Transmission electron microscopy (TEM)	S24
14. Synthesis and characterization of biaryls	S27
15. NMR spectra of triazoles 1a-c and corresponding salts 2a-c	S30
16. HRMS spectra of 3a-c , 4 and 8	S42
17. References	S45

1. Synthesis and characterization of triazoles

Synthesis of 1-(2,4,6-trimethylphenyl)-4-phenyl-1H-1,2,3-triazole (1a).

Triazole **1a** was prepared by previously reported protocol^{S1}. 2,4,6-trimethylaniline (1 g, 7.4 mmol) was dissolved in acetonitrile (5 mL) in a 25 mL round bottomed flask equipped with a magnetic stirring bar. Mixture was cooled to 0 °C in the ice bath and *t*-BuONO (1.15 g, 11.1 mmol, 1.5 equiv) and Me₃SiN₃ (1.05 g, 7.4 mmol, 1 equiv) were sequentially added. The reaction mixture was stirred for 2 hours without removing a cooling bath. Then, sodium ascorbate (0.75 g, 3.7 mmol, 0.5 equiv), CuSO₄x5H₂O (0.19 g, 0.74 mmol, 0.1 equiv) and phenylacetylene (1.15 g, 11.1 mmol, 1.5 equiv) in water (5 mL) were added. The reaction mixture was allowed to slowly warm up to room temperature while stirring overnight. The reaction mixture was quenched by adding an excess of conc. aq. ammonia and the resulting mixture was stirred for 12 h. The product was extracted with dichloromethane (3 × 10 mL) and the combined organic fractions were dried over anhydrous MgSO₄. After evaporation of the solvent, the crude product was washed with hexane (3×20 mL), to yield **1a** as a white solid (1.63 g, 84%). ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.93 (d, *J* = 7.0 Hz, 1H), 7.84 (s, 1H), 7.49-7.44 (m, 2H), 7.39-7.34 (m, 1H) 7.01 (s, 2H), 2.37 (s, 3H), 2.02 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 147.7, 140.2, 135.2, 133.6, 130.6, 129.2, 129.0, 128.4, 125.8, 121.6, 21.2, 17.4. These NMR data matched those reported in the literature^{S2}

General procedure for the synthesis of triazoles 1b and 1c

Triazoles **1b** and **1c** were prepared by previously reported protocol.^{S3} Two neck round bottomed flask equipped with a magnetic stirring bar and a condenser was charged with 1-Bromoalkane (11 mmol, 1.1 equiv), sodium azide (12 mmol, 1.2 equiv) and DMF/H₂O (4:1, 30 mL) and was heated at 95 °C overnight. After cooling down, phenylacetylene (10 mmol, 1 equiv), sodium ascorbate (10 mmol, 1 equiv) and CuSO₄·5H₂O (2 mmol, 0.2 equiv) were added and the resulting mixture was stirred for another 48 h. The solution was added to the solution of EDTA 0.5 g in aq. ammonia (200 mL) and stirred for a further 1 h. The white solid was filtered and washed with water (3 × 200 mL), dissolved in dichloromethane (100 mL) and washed with water (3×100 mL) and brine (3 × 100 mL) and dried over anhydrous MgSO₄. After evaporation of the solvent, crude product was purified by column chromatography (dichloromethane \rightarrow 9:1 dichloromethane /acetone, v/v) to give desired products.

1-hexyl-4-phenyl-1*H*-1,2,3-triazole (**1b**)

White solid, yield 79%, ¹H NMR (400 MHz, CDCl₃) δ : 7.83 (d, J = 7.1 Hz, 1H), 7.74 (s, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.38 – 7.29 (m, 1H), 4.40 (t, J = 7.2 Hz, 2H) 1.95 (m, 2H), 1.40 (m, 6H), 0.98 (t, J = 7.4 Hz, 2H)

3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.8, 130.8, 128.9, 128.2, 125.8, 119.4, 50.5, 31.3, 30.4, 26.3, 22.5, 14.1. These NMR data matched those reported in the literature^{S3}

1-butyl-4-phenyl-1*H*-1,2,3-triazole (1c)

White solid, yield 84% ¹H NMR (300 MHz, CDCl₃) δ 7.86 – 7.81 (m, 2H), 7.74 (s, 1H) 7.46 – 7.38 (m, 2H), 7.36 – 7.29 (m, 1H), 4.40 (t, *J* = 7.2 Hz, 2H), 1.93 (m, 2H), 1.40 (m, 2H), 0.97 (t, *J* = 7.4 Hz, 3H).¹³C NMR (75 MHz, CDCl₃) δ 147.8, 130.8, 128.9, 128.2, 125.8, 119.4, 50.2, 32.4, 19.8, 13.6. These NMR data matched those reported in the literature.^{S4}

2. Synthesis and characterization of triazolium iodides

Triazolium Iodides **2 a-c** were prepared by previously reported protocol.^{S5} 100 mL Schlenk tube equipped with a stirring bar and Rotaflo stopcock was charges with triazole (4.5 mmol), acetonitrile (8 mL) and methyl iodide (3.86 g, 27.2 mmol, 6 equiv). Reaction mixture was then stirred for 48 h at 80 °C. Solvent was removed under vacuum and then ethyl acetate (20 mL) was added to the solid residue. After stirring for 30 minutes white solid was filtered off and washed with ethyl acetate (3×20 mL). Remaining solid was dried under vacuum to give desired products.

1-mesityl-3-methyl-4-phenyl-1*H*-1,2,3-triazolium iodide (2a)

White solid, yield 71% ¹H NMR (400 MHz, CDCl₃) δ : 8.88 (s, 1H), 8.04 (d, *J* = 8.0 Hz, 2H), 7.63–7.55 (m, 3H), 7.04 (s, 2H), 4.58 (s, 3H), 2.37 (s, 3H), 2.22 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 144.3, 142.6, 134.5, 132.2, 131.2, 130.5, 130.3, 130.1, 129.8, 121.4, 40.9, 21.37, 18.7. These NMR data matched those reported in the literature.^{S6}

1-hexyl-3-methyl-4-phenyl-1*H*-1,2,3-triazolium iodide (2b)

White solid, yield 74% ¹H NMR (400 MHz, CDCl₃) δ : 9.51 (s, 1H), 7.74 (d, J = 9.6 Hz, 2H), 7.60–7.51 (m, 3H), 4.77 (t, J = 7.2 Hz, 2H), 4.31 (s, 3H), 2.11-2.03 (m, 2H), 1.45 – 1.35 (m, 2H), 1.34–1.25 (m, 4H),

0.86 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.8, 131.8, 129.6, 129.6, 129.5, 121.6, 54.4, 39.2, 30.8, 29.3, 25.7, 22.2, 13.8. These NMR data matched those reported in the literature.^{S7}

1-butyl-3-methyl-4-phenyl-1*H*-1,2,3-triazolium iodide (2c)

White solid, 67%, ¹H NMR (400 MHz, CDCl₃) δ : 9.52 (s, 1H), 7.72-7.70 (m, 2H), 7.61– 7.52 (m, 3H), 4.79 (t, J = 7.4 Hz, 2H), 4.31 (s, 3H), 2.06 (quint, J = 7.5 Hz, 2H), 1.44 (sex, J = 7.5 Hz, 2H), 0.96 (t, J = 7.4 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 143.0, 132.1, 129.8, 129.8, 121.8, 54.4, 39.4, 31.4, 19.6, 13.5. These NMR data matched those reported in the literature.^{S4}

3. X-ray crystallography

Diffraction data were collected by the ω -scan technique, for **3a** (cisoid) at 220(1) K, for **3c** at room temperature on Rigaku Xcalibur four-circle diffractometer with Eos CCD detector and graphitemonochromated MoK_a radiation (λ =0.71069 Å), for **3b** at 130(1) and for **3a(transoid)** at room temperature on Rigaku SuperNova four-circle diffractometer with Atlas CCD detector and mirrormonochromated CuK_a radiation (λ =1.54178 Å). The data were corrected for Lorentz-polarization as well as for absorption effects.^{S8} Precise unit-cell parameters were determined by a least-squares fit of reflections of the highest intensity (5063 for 3a(cisoid), 6628 for 3a(transoid), 3168 for 3c, 3548 for 3b), chosen from the whole experiment. The structures were solved with SHELXT [2] and refined with the full-matrix least-squares procedure on F² by SHELXL-2013.^{S9} All non-hydrogen atoms were refined anisotropically, hydrogen atoms were placed in idealized positions and refined as 'riding model' with isotropic displacement parameters set at 1.2 (1.5 for methyl groups) times U_{eq} of appropriate carrier atoms. In the crystal structure of 3a(cisoid), there are three solvent CH_2Cl_2 molecules of which two are heavily disordered. The diffraction data were collected at different temperatures, as it turned out that the samples decompose slowly during dat collection. Additionally, lowering temperature below 200K seemed to start additional changes in the crystal structure (twinning or phase transition), which caused additional effects. Therefore we decided to use the best (in our opinion) data we have, collected at 220K, and leave the analysis of the thermal behaviour of these crystals for additional investigation. The two out of three solvent molecules were disordered, the s.o.f.s were set at 0.75/0.25 and 0.85/0.15 on the basis of similar displacement parameters. The geometries of the disordered molecules were restrained to be similar to the single ordere solvent molecule, moreover, the less-occupied alternatives went unstable so they were fixed during last cycles of refinement.

Crystallographic data for the structural analysis has been deposited with the Cambridge Crystallographic Data Centre, Nos. CCDC-1842072 (**3a**-cisoidal), CCDC-1814491 (**3a**-*transoidal*) CCDC-1525786 (**3c**), and CCDC-1525787 (**3b**). Copies of this information may be obtained free of charge from: The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK. Fax: +44(1223)336-033, e-mail:deposit@ccdc.cam.ac.uk, or www: www.ccdc.cam.ac.uk.

Compound	3a (cisoidal)	3a (transoidal)	3b	3c
Formula	$C_{36}H_{38}Cl_4N_6Pd_2\cdot$	$C_{36}H_{38}Cl_4N_6Pd_2 \cdot 1/4$	$C_{30}H_{42}Cl_4N_6Pd_2$	$C_{26}H_{34}Cl_4N_6Pd_2\cdot$
1 of mana	3(CH ₂ Cl ₂)	H_2O		$2(CH_2Cl_2)$
Formula weight	1164.10	913.83	841.29	955.04
T(K)	220	295	130	295
λ(Å)	0.71069	1.54178	1.54178	0.71069
Crystal system	monoclinic	orthorhombic	triclinic	triclinic
Space group	$P2_1/n$	Pcca	P-1	P-1
a(Å)	11.7859(14)	19.2313(4)	8.5086(5)	9.6142(6)
b(Å)	17.1438(16)	9.34530(16)	9.6382(7)	9.6671(7)
c(Å)	23.6237(17)	21.9179(5)	11.0676(9)	10.4555(8)
α(°)	90	90	87.990(6)	94.150(6)
β(°)	90.536(3)	90	85.619(6)	91.958(6)
$\gamma(^{\circ})$	90	90	74.108(6)	108.730(6)
$V(Å^3)$	4773.1(8)	3939.14(14)	870.29(11)	916.18(12)
Z	4	4	1	1
$D_x(g \text{ cm}^{-3})$	1.62	1.54	1.61	1.73
F(000)	2328	1834	424	476
$\mu(\text{mm}^{-1})$	1.35	10.13	11.39	1.59
Θ range (⁰)	2.87 - 25.00	4.03 - 67.5	4.01 - 75.39	3.64 - 26.46
Reflections:				
collected	34672	28475	5824	6312
unique (R _{int})	8389 (0.089)	3558 (0.035)	3473 (0.031)	3491 (0.018)
with $I \ge 2\sigma(I)$	3748	3289	3316	3235
$R(F) [I \ge 2\sigma(I)]$	0.084	0.029	0.063	0.027
$wR(F^2)$ [I>2 $\sigma(I)$]	0.188	0.075	0.154	0.062
R(F) [all data]	0.190	0.033	0.064	0.029
wR(F ²) [all data]	0.227	0.076	0.155	0.064
Goodness of fit	0.98	1.11	1.16	1.07
max/min $\Delta \rho$ (e Å ⁻³)	1.03/-0.64	0.53/-0.44	2.91/-1.40	1.74/-0.86
CCDC number	1842072	1814491	1525786	1525787

 Table S1. Crystal data, data collection and structure refinement

Table S2. Selected	l geometrical data	(Å,°) with s.u.'s	in parentheses
--------------------	--------------------	------	---------------	----------------

	3a (cisoidal)	3a (transoidal)	3b	3c
Pd-C	1.951(10)	1.955(3)	1.954(6)	1.948(3)
	1.928(10)			
Pd-Cl(b)	2.352(3)	2.3141(8)	2.3217(14)	2.3272(7)
	2.421(3)	2.4228(7)	2.411(14)	2.4063(7)
	2.337(3)			
	2.422(3)			
Pd-Cl(t)	2.301(3)	2.2646(10)	2.3078(14)	2.2943(7)
	2.305(3)			
Pd···Pd	3.4537(12)	3.2468(4)	3.256	3.264
C-Pd-Cl(b)	173.5(3)	178.08(9)	175.23(8)	177.86(5)
	173.0(3)			
Cl(b)-Pd-Cl(t)	178.50(10)	177.10(8)	178.30(3)	177.04(16)
	177.63(10)			
Pd-Cl-Pd	94.89(10)	86.51(2)	92.84(2)	93.10(5)
	90.99(9)			
N1-C5-C4	101.7(9)	104.4(3)	104.1(2)	104.2(5)
	101.5(9)			
N1-C5-Pd	128.0(8)	127.3(2)	125.9(2)	127.4(4)
	131.8(8)			
C4-C5-Pd	129.3(8)	128.2(8)	129.6(2)	128.4(4)
	126.5(8)			
$Cl(t)-Pd\cdots Pd-Cl(t)$	4.8	146.2	180	180
A/B	61.9(3)	52.6(10)	48.37(11)	50.4(3)
	55.6(3)			
A/PdCCl ₃	64.8(3)	76.38(10)	81.92(7)	69.04(16)
	79.8(3)			

Figure S1. A comparison of the complexes from structures 3b and 3c.

Figure S2. A comparison of crystal packing of complexes 3c (left) and 3b (right), as seen along x (upper row) and z (lower row) directions.

Figure S3. Van der Waals representation of complexes, from left to right 3a (transoidal), 3a (cisoidal) and 3b.

4. NMR spectroscopic study of 3a-c in solution

Figure S4. ¹H NMR spectrum of **3a** in CDCl₃ recorded at 298 K. Int. standard = 1,2,3-trimethoxybenzene.

Figure S5. ¹H NMR spectrum of **3a** recorded at 225 K.

Figure S6. ¹H NMR spectrum of **3b** in CDCl₃ recorded at 298 K.

Figure S7. ¹H NMR spectrum of **3b** in CDCl₃ recorded at 216 K.

Figure S13. ¹³C NMR spectra of 3c

Figure S14. ¹H DOSY NMR spectrum of 3a (CDCl₃)

5. Calculations of diffusion coefficients

Theoretical diffusion coefficients (*D*) have been calculated for DFT optimized structures of 3a - c, following the Einstein-Stokes equation, corrected by a factor derived from microfrictional theory^{S11} and semi-empirically improved by Chen^{S12} eq. (1), where *k* is Boltzmann's constant, *T* is the temperature, η is the viscosity of deutered chloroform (0.539 Cp ^{S13}). Spherical equivalent radii (R_{eq}) have been calculated from volumes limited by van der Waals surface (V^{wdW}) and volumes limited by Connolly surface (V^{SES} , SES – solvent excluded surface) following eq. (2), where M is the molecular weight of a solute and eq. (3) respectively. Van der Waals and Connolly volumes have been calculated by using Jmol software.^{S14} Connolly surfaces have been generated with chloroform probe radius 2.3Å.^{S15} Corrected by shape factor theoretical diffusion coefficients (D_f) were derived by means of using eq. (4) where *f*(*p*) is the shape factor and *p* is the geometrical factor for molecules regarded as ellipsoids (p = a/b, *a* – semi-major axis, *b* – semi-minor axis).^{S16} Semi axes have been measured with GaussView 3.09 program. For all structures a

$$D = \left(\frac{kT}{6\pi nR_{eq}}\right) \left(1 + 0.695 \left(\frac{Rs}{R_{eq}}\right)^{2.234}\right)$$
(Eq. 1)
$$R_{eq}^{vdW} = \sqrt[3]{\frac{3MV^{vdW}}{4\pi N_A}}$$
(Eq. 2)

prolate shape (with two short and one long axes) was assumed and calculated by eq. (5).

$$R_{eq}^{SES} = \sqrt[3]{\frac{3MV^{SES}}{4\pi}}$$
(Eq. 3)

$$D_f = D \times f(p)$$

$$f(p) = p^{\frac{1}{3}}(p^2 - 1)^{-\frac{1}{2}}ln\left[p + (p^2 - 1)^{\frac{1}{2}}\right]$$
(Eq. 5)

(Eq. 4)

6. Computational details

All density functional theory (DFT) calculations were performed with Gaussian 03 program suite.^{S17} The geometries of the complexes and ligands were optimized (tables, in the ESI†) by using B3LYP density functional theory and the 6-31G(d) basis sets on Cl, N, C, H atoms except Pd atoms (LanL2DZ basis set) implemented in the Gaussian 03.^{S18,S19} The starting geometries of 3a - c complexes were generated from their crystal structures, whereas the starting geometries of adequate monomers were derived from their optimized complexes. Structures of all isomers of the calculated complexes were first optimized in vacuo.

Table S3. Energies of palladium species bearing tzNHC^{Ph/Mes} ligand

	E (hartree)	ZPE (kcal/mol)
3a	-3817.61571497	424.18
3a (cisoidal)	-3817.60918482	424.25
monomeric	-1908.78446038	211.71

Table S4. Energies of possible equilibrium systems in relation to most stable dimer $[{Pd(\mu-Cl)Cl(tzNHC^{Ph/Mes})}_2]$ (**3a**) (*transoidal*)

	E (hartree)	ZPE (kcal/mol)	ΔE_{zpe} (kcal/mol)	ΔE_{zpe} (kJ/mol)
3a (transoidal)	-3817.61571497	424.18	0.00	0.00
3a (cisoidal)	-3817.60918482	424.25	4.16	17.41
$2 \times \text{monomeric}$	-3817.56892076	423.42	28.60	119.67

Table S5. Energies of palladium species bearing tzNHC^{Ph/Hex} ligand.

	E (hartree)	ZPE (kcal/mol)
3b (transoidal)	-3591.39702819	434.15
3b (cisoidal)	-3591.38776995	433.77
monomeric	-1795.67314283	216.42

Table S6. Energies of possible equilibrium systems in relation to most stable dimer $[{Pd(\mu-Cl)Cl(tzNHC^{Ph/Hex})}_2]$ (3b) (transoidal)

	E (hartree)	ZPE (kcal/mol)	ΔE_{zpe} (kcal/mol)	ΔE_{zpe} (kJ/mol)
3b (transoidal)	-3591.39702819	434.15	0.00	0.00
3b (cisoidal)	-3591.38776995	433.77	5.43	22.73
$2 \times \text{monomeric}$	-3591.34628566	432.84	30.53	127.74

Table S7. Energies of palladium species with bearing tzNHC^{Ph/But} ligand.

	E (hartree)	ZPE (kcal/mol)
3c (transoidal)	-3434.14441533	362.16
3c (cisoidal)	-3434.13867638	361.94
monomeric	-1717.04694654	180.60

Table S8. Energies of possible equilibrium systems in relation to most stable dimer $[{Pd(\mu-Cl)Cl(tzNHC^{Ph/But})}_2]$ (3c) (transoidal)

	E (hartree)	ZPE (kcal/mol)	ΔE_{zpe} (kcal/mol)	ΔE_{zpe} (kJ/mol)
3c (transoidal)	-3434.14441533	362.16	0.00	0.00
3c (cisoidal)	-3434.13867638	361.94	3.39	14.18
$2 \times \text{monomeric}$	-3434.09389308	361.19	30.74	128.61

3a (cisoidal)

FigureS15.StructuresofPdspeciesbearingtzNHCligand(schematic on left, DFT optimised on right).

7. The study of transformation of 3a in solution

	E (hartree)	ZPE (kcal/mol)
3a (transoidal)	-3817.61571497	424.18
3a (cisoidal)	-3817.60918482	424.25
$2 \times \text{monomeric}$	-1908.78446038	211.71
4	-2770.37457158	422.01

Table S9. Energies of palladium species bearing tzNHC^{Ph/Mes} ligand.

Table S10. Van der Waals volumes V^{vdW} , Connolly volumes V^{SES} , theoretical diffusion coefficients D^{vdW} , D^{SES} and theoretical diffusion coefficients corrected by shape factor D_f^{vdW} , D_f^{SES} for DFT optimized structures of Pd species.

	V^{vdW} [Å ³]	V^{SES} [Å ³]	D^{vdW}	D^{SES}	D_f^{vdW}	D_f^{SES}	D_f^{exp}
			$[10^{-10} \text{ m}^2/\text{s}]$	$[10^{-10}]$	[10 ⁻¹⁰	[10 ⁻¹⁰	[10 ⁻¹⁰
				m^2/s]	m^2/s]	m^2/s]	m^2/s]
3a (transoidal)	631.61	794.09	6.20	6.68	5.99	6.45	6.66
3a (cisoidal)	631.95	790.36	6.20	6.69	6.02	6.50	
monomeric	319.16	368.26	11.43	9.33	11.13	9.08	
4	571.86	668.63	7.05	7.17	7.04	7.16	7.63

Figure S16. Optimized structure of 4

8. Optimization of the conditions of Suzuki-Miyaura coupling

The 2 mL glass reactor equipped with a condenser and a magnetic stirring bar was charged in the air with p-tolylboronic acid (2.5×10^{-4} mol, 1.05 equiv) and 1 mL of ethanol (99.8 %). The reaction mixture was stirred at 22 °C for 5 min. until complete acid dissolution. Then, aryl halide (1 equiv), dodecane (internal standard), the appropriate amount of palladium complex and KOH (1.1 equiv) were added. The mixture was stirred at 22 °C or at reflux for 24 h. The reaction course was monitored by gas chromatography and GC/MS.

Entry	Base	Solvent	3a (mol%)	Yield ^[a] [%]	
1	TBAF	<i>i</i> -PrOH	1	66	
2	КОН	<i>i</i> -PrOH	1	88	
3	tBuOK	<i>i</i> -PrOH	1	33	
4	K_2CO_3	<i>i</i> -PrOH	1	75	
5	HCOONa	<i>i</i> -PrOH	1	traces	
6	NaOH	<i>i</i> -PrOH	1	51	
7	КОН	dioxane	1	traces	
8	КОН	toluene	1	88	
9	КОН	EtOH	1	98	
10	KOH	EtOH	0.1	98	
11	КОН	EtOH	0.1	97 ^[b]	
12	КОН	EtOH	0.05	76	

Table S11. Optimization of SM reaction catalysed by 3a

Reaction conditions: 22 °C, 24 h, $[ArBr]:[ArB(OH)_2]:[KOH] = 1:1.05:1.1$; air; [a] yield calculated on the basis of GC analysis; [b] inert atmosphere.

9. Mass spectrometric study of the decomposition of 3a and 3b

The 2 mL glass reactor equipped with a condenser and a magnetic stirring bar was charged in the air with boronic acid $(2.5 \times 10^{-4} \text{ mol}, 1.0 \text{ equiv})$ and 1 mL of ethanol The reaction mixture was stirred at 22 °C for 5 min. until complete acid dissolution. Then, the appropriate amount of palladium complex **3a** or **3b** (0.1 mol%) and KOH (1.1 equiv) were added. Five minutes after addition of catalyst reaction mixture was diluted in appropriate amount of methanol and injected to ESI-MS. No signals above m/z=1000 was observed.

Figure S17. Treatment of 3a with boronic acid 6. Mass spectra of the reaction mixture.

Figure S18. Treatment of 3b with boronic acid 6. Mass spectra of the reaction mixture.

10. ¹H NMR spectroscopic investigation of the reaction of 3a with tolylboronic acid

In the NMR tube **3a** (15 mg) and 1,3,5-trimethoxybenzene (internal standard) were dissolved in CDCl₃. Then *p*-tolylboronic acid (2 equiv) KOH (2 equiv) and 3 μ L of distilled water were added. The reaction course was monitored by ¹H NMR spectroscopy.

Figure S19. ¹H NMR spectrum of the reaction mixture before the addition of tolylboronic acid.

Figure S20. ¹H NMR spectrum of the reaction mixture 30 min after addition of tolylboronic acid.

Figure S21. Superimposed spectra.

11. Synthesis and characterization of 8

Complex **3a** (100 mg) was dissolved in ethanol (5 mL) in a 25 mL round bottomed flask equipped with a magnetic stirring bar and a stopcock. Then, phenylboronicacid (4 equiv) was added followed by potassium hydroxide (4 equiv). Reaction mixture was then stirred overnight (18 h). Upon the reaction progress the mixture changed from bright yellow solution into black mixture with noticeable participation of palladium black. After the completion of reaction mixture was filtered through short pad of celite, and filter was washed with methanol sever times (3 × 10 mL). Combined organic solutions was evaporated to dryness and pure product 20.13 mg was isolated in 23 % yield by column chromatograhy (DCM-DCM/iso-PrOH gradually from 1 % to 10 % for every 50 mL of solvent, v/v, Rf = 0.3). Notably, use of methanol as a mobile phase was unsuccessful due to the similar Rf of the unreacted **3a** and the isolated salt **8**.

¹H NMR (403 MHz, CDCl₃) δ 7.35-7.31 (m, 2), 7.19-7.16 (m, 3H), 6.98 (d, *J* = 7.5 Hz, 4H), 6.82 (s, 2H), 4.33 (s, 3H), 2.27 (s, 3H), 1.99 (s, 3H), 1.80 (s, 3H), 1.76 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.7, 146.5, 140.8, 135.8, 134.4, 129.83 (overlapping), 129,80 (overlapping) 129.6, 129.5, 128.9, 128.7, 128.5, 127.1, 117.5, 39.0, 21.3, 18.0, 17.9; HRMS: m/z calcd. for C₂₅H₂₆N₃⁺ [M–Cl]⁺ 368.2122; found 368.2122; Anal. calcd. for C₂₅H₂₆ClN₃: C, 74.33; H, 6.49; Cl, 8.78; N, 10.40. Found: C, 73.47; H, 6.63; Cl, 8.55; N, 10.12.

S23

12. Mercury poisoning experiments

The glass flask (2 mL) with a condenser and a magnetic stirring bar was charged in the air with *p*-tolylboronic acid (2.5×10^{-4} mol, 1.05 equiv) and 1 mL of ethanol (99.8%). The reaction mixture was stirred at 22 °C for 5 min. until complete acid dissolution. Then, bromobenzene (2.38×10^{-4} mol, 1 equiv), dodecane (internal standard), palladium complex **3a** (2.5×10^{-7} mol, 0.1 mol%) and KOH (2.62×10^{-4} mol, 1.1 equiv) were added. Then, after 5 minutes, Hg (1000 equiv in relation to the catalyst) The reactions were carried upon vigorous stirring for 24 h. The reaction course was monitored by gas chromatography.

13. Transmission electron microscopy (TEM)

For Transmission electron microscopy (TEM) analysis a Jeol model JEM1200 EXII microscope was used. The 2 mL glass reactor equipped with a condenser and a magnetic stirring bar was charged in the air with boronic acid (2.5×10^{-4} mol, 1.05 equiv) and 1 mL of ethanol The reaction mixture was stirred at 22 °C for 5 min. until complete acid dissolution. Then, aryl halide (1 equiv), the appropriate amount of palladium complex 3a (0.1 mol%) and KOH (1.1 equiv) were added. The small drop from reaction mixture was placed on the copper grids with a pipette after 35 min and 2 hours respectively and measured. Representative TEM images were presented in Figures S24 and S25.

Figure S24. TEM micrographs of the particles present in reaction mixture after 35 min of the reaction course.

Figure S25. TEM micrographs of the particles present in reaction mixture after 2 h of the reaction course.

14. Synthesis and characterization of biaryls

The 2 mL glass reactor equipped with a condenser and a magnetic stirring bar was charged in the air with boronic acid $(2.5 \times 10^{-4} \text{ mol}, 1.05 \text{ equiv})$ and 1 mL of ethanol (99.8 %). The reaction mixture was stirred at 22 °C for 5 min. until complete acid dissolution. Then, aryl halide (1 equivthe appropriate amount of palladium complex and KOH (1.1 equiv) were added. The mixture was stirred at 22 °C or at reflux for 24 h. Reaction products were identified on the basis of their mass spectra. All information on catalyst concentration refers to molar concentration of palladium. For isolation of products after reaction course 2 mL of distilled water and 2 mL of hexane were added. Organic layer was separated and treated as described below.

4-Methylbiphenyl (4a)

Yield 95%. White solid obtained after column chromatography (SiO₂, hexane); ¹H NMR (500 MHz, CDCl₃, ppm) δ : 7.79-7.75 (m, 2H), 7.68 (t, *J* = 7.6 Hz, 2H), 7.62 (dd, *J* = 10.5, 4.9 Hz, 2H), 7.52 (dd, *J* = 10.5, 4.2 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 2H), 2.59 (s, 3H). ¹³C NMR: (101 MHz CDCl₃, ppm) 141.1, 138.3, 137.0, 129.4, 128.7, 127.0, 126.9 (2C), 21.1. MS (EI) m/z (%) = 168 (M⁺, 100), 154 (47), 76 (21).

4-chloro-4'-methylbiphenyl (4b)

Yield 97%. White solid obtained after column chromatography (SiO₂, hexane/ethyl acetate 9/1) ¹H NMR (300 MHz, CDCl₃, ppm) δ : 7.54–7.40 (m, 6H), 7.28 (dd, *J* = 7.9, 0.6 Hz, 2H), 2.39 (s, 3H); ¹³C NMR: (75 MHz, CDCl₃, ppm) δ :139.73, 137.56, 137.23, 133.16, 129.73, 128.98, 128.31, 126.94, 21.24. MS (EI) m/z (%) 202(M⁺, 100) 201(15,4), 203(18,9), 204(28,9), 167(49,4), 166 (12,2), 165(25), 152(12).

4-Methoxy-4'-methylbiphenyl (4c)

Yield 69%. White solid obtained after column chromatography (SiO₂, hexane/ethyl acetate 9/1) ¹H NMR (300 MHz, CDCl₃, ppm) δ : 7.54–7.50 (m, 2H), 7.46 (d, *J* = 8.1 Hz, 2H), 7.24 (d, *J* = 8.1 Hz, 2H), 7.00 –

6.96 (m, 2H), 3.85 (s, 3H), 2.39 (s, 3H); ¹³C NMR: (75 MHz, CDCl₃, ppm) δ : 158.9, 137.9, 136.3, 133.7, 129.4, 127.9, 126.6, 114.1, 55.3, 21.0. MS (EI) m/z (%) = 198 (M⁺, 100), 183 (47), 167 (50), 153 (24).

2,4'-dimethylbiphenyl (4d)

Yield 64%. Colourless oil obtained after column chromatography (SiO₂, hexane); ¹H NMR (400 MHz CDCl₃, ppm) δ : 7.35 (m, 8H), 2.41 (s, 3H), 2.28 (s, 3H). ¹³C NMR: (100 MHz, CDCl₃, ppm) δ : 141.9, 138.4, 136.2, 135.0, 130.1, 129.8, 129.0, 128.5, 126.9, 125.4, 21.1, 20.5, MS (EI) m/z (%) = MS (EI) m/z (%) = 182 (M⁺, 100), 167 (44), 153 (23), 91 (52).

4-acetoxy-4'-methylbiphenyl (4e)

Yield 98%. White solid obtained after column chromatography (SiO₂, hexane/ethyl acetate 9/1); ¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.02 (dd, *J* = 8.2, 0.5 Hz, 2H), 7.67 (dd, *J* = 8.2, 0.4 Hz, 2H), 7.55 – 7.52 (m, 2H), 7.28 (dd, *J* = 8.5, 0.6 Hz, 2H), 2.64 (s, 3H), 2.41 (s, 3H) ppm. ¹³C NMR: (100 MHz, CDCl₃, ppm) δ : 197.7, 145.7, 138.2, 136.9, 135.6, 129.7, 128.9, 127.1, 126.9, 26.6, 21.2. MS (EI) m/z (%) = 210 (M⁺, 100), 195 (73), 167 (53), 153 (37), 43 (23).

2-(p-tolyl)pyridine (4g)

Yield 80%. colourless liquid, isolated by column chromatography (SiO₂, hexane/ethyl acetate 9/1), and subsequent extraction of combine fraction containing products with HCl aq. solution (1M, 5 mL)). Then, sodium biscarbonate was added to the aqueous layer till precipitate of white solid was formed. The reaction mixture was then extracted with hexane (3x5mL). Combine organic layers were dried over anhydrous MgSO₄ and product was obtained after evaporation of the solvent. ¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.68 (ddd, J = 4.8, 1.7, 1.1 Hz, 1H), 7.91 – 7.87 (m, 2H), 7.76 – 7.68 (m, 2H), 7.32 – 7.27 (m,

2H), 7.22 - 7.18 (m, 1H), 2.41 (s, 3H). ¹³C NMR: (100 MHz, CDCl₃, ppm) δ: 157.6, 149.7, 139.0, 136.8, 136.7, 129.6, 126.9, 121.9, 120.4, 21.4. δ: MS (EI) m/z (%) = 170 (M+H, 100), 171(13,5), 169 (32), 168 (31), 167 (14).

3-(p-tolyl)pyridine (*4h*)

Yield 93%. White solid isolated by column chromatography (SiO₂, hexane/ethyl acetate 9/1), and subsequent extraction of combine fraction containing products with HCl aq. solution (1M, 5 mL)). Then, to the water layer sodium biscarbonate was added till participate of white solid. Mixture was then extracted with hexane (3×5 mL). Combine organic layers were dried over anhydrous MgSO₄ and product were obtained after evaporation of the solvent. ¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.84 (d, J = 1.7 Hz, 1H), 8.57 (dd, J = 4.8, 1.6 Hz, 1H), 7.86 (ddd, J = 7.9, 2.4, 1.7 Hz, 1H), 7.48 (d, J = 8.1 Hz, 2H), 7.35 (ddd, J = 7.9, 4.8, 0.9 Hz, 1H), 7.29 (d, J = 7.8 Hz, 2H), 2.41 (s, 3H). ¹³C NMR: (100 MHz, CDCl₃, ppm) δ : 148.27, 148.25, 138.19, 136.72, 135.03, 134.32, 129.94, 127.11, 123.66, 21.29. MS (EI) m/z (%) = 170 (M+H, 100), 169 (78), 168 (57), 167 (31), 115 (17).

15. NMR spectra of triazoles 1a-c and corresponding salts 2a-c

Figure S26. ¹H NMR spectra of 1-(2,4,6-trimethylphenyl)-4-phenyl-1*H*-1,2,3-triazole (1a)

Figure S27. ¹³C NMR spectra of 1-(2,4,6-trimethylphenyl)-4-phenyl-1*H*-1,2,3-triazole (1a)

Figure S28. ¹H NMR spectra of 1-hexyl-4-phenyl-1*H*-1,2,3-triazole (1b)

Figure S29. ¹³C NMR spectra of 1-hexyl-4-phenyl-1*H*-1,2,3-triazole (1b)

Figure S30. ¹H NMR spectra of 1-butyl-4-phenyl-1*H*-1,2,3-triazole (1c)

Figure S31. ¹³C NMR spectra of 1-butyl-4-phenyl-1*H*-1,2,3-triazole (1c)

Figure S32. ¹H NMR spectra of 1-mesityl-3-methyl-4-phenyl-1*H*-1,2,3-triazolium iodide (2a)

Figure S33. ¹³C NMR spectra of 1-mesityl-3-methyl-4-phenyl-1*H*-1,2,3-triazolium iodide (2a)

Figure S34. ¹H NMR spectra of 1-hexyl-3-methyl-4-phenyl-1*H*-1,2,3-triazolium iodide (2b)

Figure S35. ¹³C NMR spectra of 1-hexyl-3-methyl-4-phenyl-1*H*-1,2,3-triazolium iodide (2b)

Figure S36. ¹H NMR spectra of 1-butyl-3-methyl-4-phenyl-1*H*-1,2,3-triazolium iodide (2c)

Figure S37. ¹³C NMR spectra of 1-butyl-3-methyl-4-phenyl-1*H*-1,2,3-triazolium iodide (2c)

16. HRMS of complexes 3a-c

Figure S38. HRMS of 3a

Figure S39. HRMS of 3b

Figure S40. HRMS of 3c

Figure S41. MS and HRMS of 4 (independent synthesis)

Figure S42. Disproportionation of 3a. Mass spectrum of the post reaction mixture.

Figure S43. HRMS of 8

17. References

- S1 K. Barral, A. Moorhouse, J. Moses, Org. Lett. 2007, 9, 1809–1811.
- S2 R. Thorwirth, A. Stolle, B. Ondruschka, A. Wild, U. Schubert, *Chem. Commun.* 2011, 47, 4370–4372.
- S3 K. Kilpin, S.Crot, T. Riedel, J. Kitchen, P. Dyson, *Dalton Trans.* 2014, 43, 1443–1448.
- S4 A. Poulain, D. Canseco-Gonzalez, R. Hynes-Roche, H. Müller-Bunz, O. Schuster, H. Stoeckli-Evans, A. Neels, M. Albrecht, *Organometallics* 2011, 30, 1021–1029.
- S5 R. Saravanakumar, V. Ramkumar, S. Sankararaman, Organometallics 2011, 30, 1689–1694.
- S6 D. Canseco-Gonzalez, A. Gniewek, M. Szulmanowicz, H. Müller-Bunz, A. Trzeciak, M. Albrecht, *Chem. Eur. J.* 2012, 18, 6055–6062.
- S7 H. Nulwala, C. Tang, B. Kail, K. Damodaran, P. Kaur, S. Wickramanayake, W. Shi, D. Luebke, *Green Chem.* 2011, 13, 3345–3349.
- S8 CrysAlisPro 1.171.38.34a (Rigaku OD, 2015).
- S9 Sheldrick, G. M. Acta Cryst. 2014, C71, 3–8.
- S10 A. L. Spek, Acta Cryst. 2015, C71, 9–18.
- S11 A. Gierer and K. Z. Wirtz, Z. Naturforsch., A: Astrophys. Phys. Phys. Chem. 1953, 8, 532–538.
- S12 H.-C. Chen and S.-H. Chen, J. Phys. Chem. 1984, 88, 5118–5121.
- S13 D. Li, G. Kagan, R. Hopson, P. G. Williard, J Am Chem Soc. 2009, 131, 5627–5634.
- S14 Jmol an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
- S15 H. Kovacs, A. E. Mark, J. Johansson, W. F. van Gunsteren, J. Mol. Biol. 1995, 247, 808–822.
- S16 N. D. Favera, L. Guènèe, G. bernardelli and C. Piguet, Dalton Trans. 2009, 7625–7638.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010.
- S18 A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5653.
- S19 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter, 1988, 37, 785–789.