Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Colorimetric and Fluorometric Turn-on Sensor for Selective Detection of Fluoride Ion:

Sol-Gel Transition Studies and Theoretical Insights

Srikala Pangannaya^a, Makesh Mohan^b and Darshak R. Trivedi^{a*}

^aSupramolecular Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK), Surathkal-575025, Karnataka, India

^bDepartment of Physics, National Institute of Technology Karnataka (NITK), Surathkal-

575025, Karnataka, India

*Author to whom correspondence should be addressed e-mail: <u>darshak_rtrivedi@yahoo.co.in</u>,

Tel.: +91-824-2473205; fax: +91 824 2474033.

Contents

- 1. Fig. S1 FT-IR spectrum of receptor R1
- 2. Fig. S2 ¹H-NMR spectrum of receptor R1
- 3. Fig. S3 ESI-MS spectrum of receptor R1
- 4. Fig. S4 ¹³C-NMR spectrum of receptor R1
- 5. Fig. S5 Job's plot for R1-TBAF complex
- 6. Fig. S6 Color change of R1 with the addition of 2 equiv. of TBAOH
- 7. Fig. S7 Fluorometric response of R1 with the addition of 2 equiv. of TBAOH
- 8. Fig. S8 UV-Vis spectra of R1 with the addition of 2 equiv. of TBAOH
- 9. Fig. S9 PL spectra of R1 with the addition of 2 equiv. of TBAOH
- 10. Fig. S10 DFT derived UV-Vis spectra of the R1 and R1+ F^- complex
- 11. Calculation of binding constant and detection limit from UV-Vis studies
- 12. Table S1 Gelation properties of R1

Fig. S1 FT-IR spectrum of receptor R1

Fig. S2 ¹H-NMR spectrum of receptor R1

. S3 ESI-MS spectrum of receptor R1

Fig. S4 ¹³C NMR spectrum of receptor R1

Fig. S5 Job's plot for R1-TBAF complex

Fig. S6 Color change of R1 with the addition of 2 equiv. of TBAOH

Fig. S7 Fluorometric response of R1 with the addition of 2 equiv. of TBAOH

Fig. S8 UV-Vis spectra of R1 with the addition of 2 equiv. of TBAOH

Fig. S9 PL spectra of R1 with the addition of 2 equiv. of TBAOH

Fig. S10 DFT derived UV-Vis spectra of the R1 and R1+ F⁻ complex

Table S1 Gelation properties of R1

Solvent	State
DMSO	G (26 mg/mL)
DMF	G (26 mg/mL)
Cyclohexane	S
Chloroform	S
Methanol	S
Acetonitrile	G (26 mg/mL)
n-Hexane	S
Diethyl ether	S
DCM	S
THF	S
DMF : H ₂ O (1:2 , v/v)	Ι
DMSO: H ₂ O (1:2 , v/v)	Ι
Propyl alcohol	S
Ethanol	S
Dioxane	S
S = solution; $G =$ gel (minimum gelatination concentration); $I =$ insoluble	

Calculation of binding constant from UV-Vis studies:

Binding constant has been calculated using Benesi-Hildebrand equation¹ as given below;

$1/(A-A_0) = 1/(A_{max} - A_0) + 1/K [X_]^n (A_{max} - A_0)$

where, A_0 , A, A_{max} are the absorption considered in the absence of anion, at an intermediate, and at a concentration of saturation. K is binding constant, $[X^-]$ is concentration of anion and n is the stoichiometric ratio.

Calculation of Detection limit:

The limit of detection was found using this equation.² DL = $C_L \times C_T$ C_L = Conc. of receptor; C_T = Conc. of Titrant at which change was observed.

References:

- 1. H. Benesi and H. Hildebrand, J. Am. Chem. Soc., 1948, 71, 2703–2707.
- 2. V. Bhalla, A. Gupta, M. Kumar., Chem. Commun., 2012, 48, 11862.